Abstract

The mechanical response of municipal solid waste (MSW) under different types of loading and testing conditions has been explored by many researchers. However, the effect of temperature on MSW compressibility has yet to be investigated. Temperature enhancement is well-known in landfill engineering, mainly when the bioreactor philosophy is employed. The generated heat gradients affect the solid particles and fluid phases. As a result, the mechanical response of MSW will be different compared with the most recent research results. Only a few investigations have been conducted on the impact of temperature on MSW’s mechanical response. This research shows how temperature enhancement impacts the compression behavior of MSW specimens with different compositions. A large-scale temperature-controlled triaxial device capable of imposing temperatures up to 85°C has been used. It is shown that, with increasing temperature, the compressive strains for MSW increase. However, the waste composition, mainly the MSW plastic content, also affects these strains. The temperature enhancements increase the mechanical creep and immediate compression indexes but decrease the samples’ elastic rebound and swelling index. Furthermore, the paper analyzes how pore water pressure affects the effective stress in such varying temperature conditions considering the waste particles’ compressibility. The achieved values show that the pore water pressure effect on effective stress is reduced up to 75 % because of the particles’ compressibility. The permeability of samples was examined based on the isotropic compression results. The results confirmed that MSW’s permeability depends on the plastic content, applied confining stress, and temperature. Increasing the temperature level showed a reduction in the permeability of samples. However, this difference was not paramount.

References

1.
Bareither
,
C. A.
,
Benson
C. H.
, and
Edil
T. B.
.
2012
. “
Compression Behavior of Municipal Solid Waste: Immediate Compression
.”
Journal of Geotechnical and Geoenvironmental Engineering
138
, no. 
9
(September):
1047
1062
. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000672
2.
Beaven
,
R. P.
and
Powrie
W.
. n.d “
Hydrological and Geotechnical Properties of Refuse Using a Large Scale Compression Cell
.” Paper presented at the Fifth International Landfill Symposium, Cagliari, Italy, October
1995
.
3.
Bjarngard
,
A.
and
Edgers
L.
.
1990
. “
Settlement of Municipal Solid Waste Landfills
.” In
Proceedings of the 13th Annual Madison Waste Conference
,
192
205
.
Madison, WI
:
University of Wisconsin
.
4.
Breitmeyer
,
R. J.
,
Benson
C. H.
, and
Edil
T. B.
.
2019
. “
Effects of Compression and Decomposition on Saturated Hydraulic Conductivity of Municipal Solid Waste in Bioreactor Landfills
.”
Journal of Geotechnical and Geoenvironmental Engineering
145
, no. 
4
(April): 04019011. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002026
5.
Chen
,
R.-H.
,
Chen
K.-S.
, and
Liu
C.-N.
.
2010
. “
Study of the Mechanical Compression Behavior of Municipal Solid Waste by Temperature-Controlled Compression Tests
.”
Environmental Earth Sciences
61
, no. 
8
(November):
1677
1690
. https://doi.org/10.1007/s12665-010-0481-y
6.
Chouksey
,
S. K.
and
Babu
G. L. S.
.
2015
. “
Constitutive Model for Strength Characteristics of Municipal Solid Waste
.”
International Journal of Geomechanics
15
, no. 
2
(April): 04014040. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000351
7.
Edil
,
T. B.
,
Ranguette
V. J.
, and
Wuellner
W. W.
.
1990
. “
Settlement of Municipal Refuse
.” In
Geotechnics of Waste Fills—Theory and Practice
, edited by
Landva
A.
and
Knowles
G. D.
,
225
239
.
West Conshohocken, PA
:
ASTM International
. https://doi.org/10.1520/STP25309S
8.
El-Fadel
,
M.
and
Khoury
R.
.
2000
. “
Modeling Settlement in MSW Landfills: A Critical Review
.”
Critical Reviews in Environmental Science and Technology
30
, no. 
3
:
327
361
. https://doi.org/10.1080/10643380091184200
9.
Feng
,
S.-J.
,
Gao
K.-W.
,
Chen
Y.-X.
,
Li
Y.
,
Zhang
L. M.
, and
Chen
H. X.
.
2017
. “
Geotechnical Properties of Municipal Solid Waste at Laogang Landfill, China
.”
Waste Management
63
(May):
354
365
. https://doi.org/10.1016/j.wasman.2016.09.016
10.
Gabr
,
M. A.
and
Valero
S. N.
.
1995
. “
Geotechnical Properties of Municipal Solid Waste
.”
Geotechnical Testing Journal
18
, no. 
2
(June):
241
251
. https://doi.org/10.1520/GTJ10324J
11.
Gourc
,
J.-P.
,
Staub
M. J.
, and
Conte
M.
.
2010
. “
Decoupling MSW Settlement into Mechanical and Biochemical Processes – Modelling and Validation on Large-Scale Setups
.”
Waste Management
30
, nos. 
8–9
(August–September):
1556
1568
. https://doi.org/10.1016/j.wasman.2010.03.004
12.
Head
,
K. H.
and
Epps
R. J.
.
2014
.
Manual of Soil Laboratory Testing, Volume III: Effective Stress Tests
, 3rd ed.
Dunbeath, UK
:
Whittles Publishing
.
13.
Hossain
,
M. S.
,
Gabr
M. A.
, and
Barlaz
M. A.
.
2003
. “
Relationship of Compressibility Parameters to Municipal Solid Waste Decomposition
.”
Journal of Geotechnical and Geoenvironmental Engineering
129
, no. 
12
(December):
1151
1158
. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:12(1151)
14.
Jain
,
P.
,
Powell
J.
,
Townsend
T. G.
, and
Reinhart
D. R.
.
2006
. “
Estimating the Hydraulic Conductivity of Landfilled Municipal Solid Waste Using the Borehole Permeameter Test
.”
Journal of Environmental Engineering
132
, no. 
6
(June):
645
652
. https://doi.org/10.1061/(ASCE)0733-9372(2006)132:6(645)
15.
Karimpour-Fard
,
M.
and
Machado
S.
.
2012
. “
Deformation Characteristics of MSW Materials
.”
Electronic Journal of Geotechnical Engineering
17
: 20092024.
16.
Karimpour-Fard
,
M.
,
Machado
S. L.
,
Shariatmadari
N.
, and
Noorzad
A.
.
2011
. “
A Laboratory Study on the MSW Mechanical Behavior in Triaxial Apparatus
.”
Waste Management
31
, no. 
8
(August):
1807
1819
. https://doi.org/10.1016/j.wasman.2011.03.011
17.
Kavazanjian
,
E.
, Jr.
,
Matasovic
N.
, and
Bachus
R. C.
.
1999
. “
Large-Diameter Static and Cyclic Laboratory Testing of Municipal Solid Waste
.” In
Sardinia 99: Seventh International Waste Management and Landfill Symposium; Barriers, Waste Mechanics, and Landfill Design
, vol. 3, edited by
Christensen
T. H.
,
Cossu
R.
, and
Stegmann
R.
,
437
444
.
Cagliari, Italy
:
CISA.
18.
Khaleghi
,
M.
,
Karimpour-Fard
M.
,
Heshmati
A. A.
, and
Machado
S. L.
.
2023
. “
Thermo-hydro-mechanical Response of MSW in a Modified Large Oedometer Apparatus
.”
International Journal of Geomechanics
23
, no. 
3
(March): 04022310. https://doi.org/10.1061/IJGNAI.GMENG-7997
19.
Krause
,
M.
2022
.
When Does a Municipal Solid Waste Landfill Become an Elevated Temperature Landfill (ETLF)?, EPA/600/R-21/285
.
Washington, DC
:
Environmental Protection Agency
.
20.
Lahoori
,
M.
,
Rosin-Paumier
S.
, and
Masrouri
F.
.
2021
. “
Effect of Monotonic and Cyclic Temperature Variations on the Mechanical Behavior of a Compacted Soil
.”
Engineering Geology
290
(September): 106195. https://doi.org/10.1016/j.enggeo.2021.106195
21.
Landva
,
A. O.
and
Clark
J. I.
.
1990
. “
Geotechnics of Waste Fill
.” In
Geotechnics of Waste Fills - Theory and Practice
, edited by
Landva
A.
and
Knowles
G. D.
,
86
103
.
West Conshohocken, PA
:
ASTM International
. https://doi.org/10.1520/STP25301S
22.
Li
,
Y. P.
,
Chen
J. R.
,
Shi
J.
,
Li
X.
, and
Wu
X.
.
2023
. “
Thermo-mechanical Volume Change Behavior of Municipal Solid Waste: Experimental Study and Constitutive Model
.”
Canadian Geotechnical Journal
60
, no. 
4
(April):
410
425
. https://doi.org/10.1139/cgj-2022-0002
23.
Li
,
A.-Z.
and
Feng
S.-J.
.
2022
. “
A Double-Phase Constitutive Model for Municipal Solid Waste with a Fiber Pullout Criterion to Evaluate the Softening Behavior
.”
Computers and Geotechnics
150
(October): 104901. https://doi.org/10.1016/j.compgeo.2022.104901
24.
Lu
,
S.-F.
and
Feng
S.-J.
.
2022
. “
Coupled Bio-hydro-thermo-mechanical Interactions of Landfilled MSW Based on a Multi-phase, Multi-component Numerical Model
.”
Computers and Geotechnics
144
(April): 104659. https://doi.org/10.1016/j.compgeo.2022.104659
25.
,
X.
,
Zhai
X.
, and
Huang
M.
.
2017
. “
Characterization of the Constitutive Behavior of Municipal Solid Waste Considering Particle Compressibility
.”
Waste Management
69
(November):
3
12
. https://doi.org/10.1016/j.wasman.2017.08.003
26.
Luettich
,
S. M.
and
Yafrate
N.
.
2016
. “
Measuring Temperatures in an Elevated Temperature Landfill
.” In
Geo-Chicago 2016: Sustainable Geoenvironmental Systems
, edited by
De
A.
,
Reddy
K. R.
,
Yesiller
N.
,
Zekkos
D.
, and
Farid
A.
,
162
176
.
Reston, VA
:
American Society of Civil Engineers
. https://doi.org/10.1061/9780784480144.017
27.
Machado
,
S. L.
,
Carvalho
M. F.
, and
Vilar
O. M.
.
2002
. “
Constitutive Model for Municipal Solid Waste
.”
Journal of Geotechnical and Geoenvironmental Engineering
128
, no. 
11
(November):
940
951
. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:11(940)
28.
Machado
,
S. L.
,
Karimpour-Fard
M.
,
Shariatmadari
N.
,
Carvalho
M. F.
, and
do Nascimento
J. C. F.
.
2010
. “
Evaluation of the Geotechnical Properties of MSW in Two Brazilian Landfills
.”
Waste Management
30
, no. 
12
(December):
2579
2591
. https://doi.org/10.1016/j.wasman.2010.07.019
29.
Machado
,
S. L.
,
Vilar
O. M.
, and
Carvalho
M. F.
.
2008
. “
Constitutive Model for Long Term Municipal Solid Waste Mechanical Behavior
.”
Computers and Geotechnics
35
, no. 
5
(September):
775
790
. https://doi.org/10.1016/j.compgeo.2007.11.008
30.
Machado
,
S. L.
,
Vilar
O. M.
,
Carvalho
M. F.
, and
Karimpour-Fard
M.
.
2017
. “
A Constitutive Framework to Model the Undrained Loading of Municipal Solid Waste
.”
Computers and Geotechnics
85
(May):
207
219
. https://doi.org/10.1016/j.compgeo.2016.12.002
31.
Marques
,
A. C. M.
,
Filz
G. M.
, and
Vilar
O. M.
.
2003
. “
Composite Compressibility Model for Municipal Solid Waste
.”
Journal of Geotechnical and Geoenvironmental Engineering
129
, no. 
4
(April):
372
378
. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:4(372)
32.
Matasović
,
N.
and
Kavazanjian
E.
 Jr.
1998
. “
Cyclic Characterization of OII Landfill Solid Waste
.”
Journal of Geotechnical and Geoenvironmental Engineering
124
, no. 
3
(March):
197
210
. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:3(197)
33.
Mokhtari
,
M.
,
Heshmati Rafsanjani
A. A.
, and
Shariatmadari
N.
.
2019
. “
The Effect of Aging on the Compressibility Behavior and the Physical Properties of Municipal Solid Wastes: A Case Study of Kahrizak Landfill, Tehran
.”
Environmental Earth Sciences
78
, no. 
16
(August): 519. https://doi.org/10.1007/s12665-019-8523-6
34.
Olivier
,
F.
and
Gourc
J.-P.
.
2007
. “
Hydro-mechanical Behavior of Municipal Solid Waste Subject to Leachate Recirculation in a Large-Scale Compression Reactor Cell
.”
Waste Management
27
, no. 
1
:
44
58
. https://doi.org/10.1016/j.wasman.2006.01.025
35.
Oweis
,
I. S.
and
Khera
R. P.
.
1990
.
Geotechnology of Waste Management
.
London
:
Butterworths
.
36.
Portelinha
,
F. H. M.
,
Correia
N. S.
, and
Daciolo
L. V. P.
.
2020
. “
Impact of Temperature on Immediate and Secondary Compression of MSW with High and Low Food Contents
.”
Waste Management
118
(December):
258
269
. https://doi.org/10.1016/j.wasman.2020.08.044
37.
Powrie
,
W.
and
Beaven
R. P.
.
1999
. “
Hydraulic Properties of Household Waste and Implications for Landfills
.”
Geotechnical Engineering
137
, no. 
4
(October):
235
237
. https://doi.org/10.1680/gt.1999.370409
38.
Reddy
,
K. R.
,
Hettiarachchi
H.
,
Parakalla
N. S.
,
Gangathulasi
J.
, and
Bogner
J. E.
.
2009
. “
Geotechnical Properties of Fresh Municipal Solid Waste at Orchard Hills Landfill, USA
.”
Waste Management
29
, no. 
2
(February):
952
959
. https://doi.org/10.1016/j.wasman.2008.05.011
39.
Schupp
,
S.
,
De la Cruz
F. B.
,
Cheng
Q.
,
Call
D. F.
, and
Barlaz
M. A.
.
2021
. “
Evaluation of the Temperature Range for Biological Activity in Landfills Experiencing Elevated Temperatures
.”
ACS ES&T Engineering
1
, no. 
2
(February):
216
227
. https://doi.org/10.1021/acsestengg.0c00064
40.
Shariatmadari
,
N.
,
Asadi
M.
, and
Karimpour-Fard
M.
.
2017
. “
Investigation of Fiber Effect on the Mechanical Behavior of Municipal Solid Waste by Different Shearing Test Apparatuses
.”
International Journal of Environmental Science and Technology
14
, no. 
10
(October):
2239
2248
. https://doi.org/10.1007/s13762-017-1297-z
41.
Shariatmadari
,
N.
,
Machado
S. L.
,
Noorzad
A.
, and
Karimpour-Fard
M.
.
2009
. “
Municipal Solid Waste Effective Stress Analysis
.”
Waste Management
29
, no. 
12
(December):
2918
2930
. https://doi.org/10.1016/j.wasman.2009.07.009
42.
Singh
,
S.
and
Murphy
B. J.
.
1990
. “
Evaluation of the Stability of Sanitary Landfills
.” In
Geotechnics of Waste Fills—Theory and Practice
, edited by
Landva
A.
and
Knowles
G. D.
,
240
258
.
West Conshohocken, PA
:
ASTM International
. https://doi.org/10.1520/STP25310S
43.
Sivakumar Babu
,
G. L.
,
Reddy
K. R.
,
Chouskey
S. K.
, and
Kulkarni
H. S.
.
2010
. “
Prediction of Long-Term Municipal Solid Waste Landfill Settlement Using Constitutive Model
.”
Hazardous, Toxic, and Radioactive Waste Management
14
, no. 
2
(April):
139
150
. https://doi.org/10.1061/(ASCE)HZ.1944-8376.0000024
44.
Skempton
,
A. W.
1984
. “
Effective Stress in Soils, Concrete and Rocks
.” In
Selected Papers on Soil Mechanics
.
London
:
Thomas Telford
. https://doi.org/10.1680/sposm.02050.0014
45.
Sowers
,
G. F.
1975
. “
Settlement of Waste Disposal Fills: Conference. Session Four. 6F, 1T, 3R. PROC. EIGHTH INT. CONF. ON SOIL MECH. FOUND. ENGNG. MOSCOW, V2.2, 1973, P207–210
.”
International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts
12
, no. 
4
(April):
57
58
. https://doi.org/10.1016/0148-9062(75)90051-0
46.
Sun
,
Z.
,
Xiao
Y.
,
Meng
M.
,
Liu
H.
, and
Shi
J.
.
2023
. “
Thermally Induced Volume Change Behavior of Sand–Clay Mixtures
.”
Acta Geotechnica
18
, no. 
5
(May):
2373
2388
. https://doi.org/10.1007/s11440-022-01744-w
47.
Townsend
,
T. G.
,
Miller
W. L.
, and
Earle
J. F. K.
.
1995
. “
Leachate-Recycle Infiltration Ponds
.”
Journal of Environmental Engineering
121
, no. 
6
(January):
465
471
. https://doi.org/10.1061/(ASCE)0733-9372(1995)121:6(465)
48.
Xie
,
M.
,
Aldenkortt
D.
,
Wagner
J.-F.
, and
Rettenberger
G.
.
2006
. “
Effect of Plastic Fragments on Hydraulic Characteristics of Pretreated Municipal Solid Waste
.”
Canadian Geotechnical Journal
43
, no. 
12
(December):
1333
1343
. https://doi.org/10.1139/t06-070
49.
Yeşiller
,
N.
,
Hanson
J. L.
, and
Yee
E. H.
.
2015
. “
Waste Heat Generation: A Comprehensive Review
.”
Waste Management
42
(August):
166
179
. https://doi.org/10.1016/j.wasman.2015.04.004
This content is only available via PDF.
You do not currently have access to this content.