Abstract

This study investigates linkages between volume change, pore fluid drainage, shear wave velocity, and temperature of soft clays using a thermal triaxial cell equipped with bender elements, a measurement approach that has not been explored widely in past thermo-mechanical studies. Two kaolinite specimens were consolidated mechanically to a normally consolidated state and then subjected to drained and undrained heating-cooling cycles, respectively. After cooling, the specimens were subjected to further mechanical consolidation to evaluate changes in apparent preconsolidation stress. Both specimens showed net contractive thermal strains after a heating-cooling cycle and overconsolidated behavior during mechanical compression immediately after cooling. The shear wave velocity increased during drained heating, but negligible changes were observed during drained cooling, indicating permanent hardening because of thermal consolidation during the heating-cooling cycle. The shear wave velocity decreased during undrained heating because of a reduction in effective stress associated with thermal pressurization of the pore fluid but subsequently increased when drainage was permitted at elevated temperature. The shear wave velocity increased slightly during undrained cooling but decreased when drainage was permitted at room temperature. Net increases in small-strain shear modulus of 17 and 11 % after heating-cooling cycles under drained and undrained (with drainage after reaching stable temperatures) conditions, respectively, provide further evidence to the potential of thermal soil improvement of normally consolidated clays. Transient changes in shear modulus also highlight the importance of considering drainage conditions and corresponding changes in effective stress state during heating-cooling cycles.

References

1.
Abuel-Naga
,
H. M.
,
Bergado
D. T.
, and
Chaiprakaikeow
S.
.
2006
. “
Innovative Thermal Technique for Enhancing the Performance of Prefabricated Vertical Drain during the Preloading Process
.”
Geotextiles and Geomembranes
24
, no. 
6
(December):
359
370
. https://doi.org/10.1016/j.geotexmem.2006.04.003
2.
Abuel-Naga
,
H. M.
,
Bergado
D. T.
,
Bouazza
A.
, and
Ramana
G. V.
.
2007
. “
Volume Change Behaviour of Saturated Clays under Drained Heating Conditions: Experimental Results and Constitutive Modeling
.”
Canadian Geotechnical Journal
44
, no. 
8
(August):
942
956
. https://doi.org/10.1139/t07-031
3.
Abuel-Naga
,
H. M.
,
Bergado
D. T.
, and
Lim
B. F.
.
2007
. “
Effect of Temperature on Shear Strength and Yielding Behavior of Soft Bangkok Clay
.”
Soil and Foundation
47
, no. 
3
(June):
423
436
. https://doi.org/10.3208/sandf.47.423
4.
Alsherif
,
N. A.
and
McCartney
J. S.
.
2015
. “
Thermal Behaviour of Unsaturated Silt at High Suction Magnitudes
.”
Géotechnique
65
, no. 
9
(September):
703
716
. https://doi.org/10.1680/geot.14.P.049
5.
ASTM International.
2019
.
Standard Test Method for Determination of Shear Wave Velocity and Initial Shear Modulus in Soil Specimens Using Bender Elements
. ASTM D8295-19. West Conshohocken, PA:
ASTM International
, approved November 1,
2019
. https://doi.org/10.1520/D8295-19
6.
Atkinson
,
J. H.
2000
. “
Non-linear Soil Stiffness in Routine Design
.”
Géotechnique
50
, no. 
5
(October):
487
508
. https://doi.org/10.1680/geot.2000.50.5.487
7.
Atkinson
,
J. H.
and
Sallfors
G.
.
1991
. “
Experimental Determination of Soil Properties
.” In
Proceedings of the 10th European Conference on Soil Mechanics & Foundation Engineering
, Vol. 3,
915
956
.
Boca Raton, FL
:
CRC Press
.
8.
Baldi
,
G.
,
Hueckel
T.
, and
Pellegrini
R.
.
1988
. “
Thermal Volume Changes of Mineral-Water System in Low-Porosity Clay Soils
.”
Canadian Geotechnical Journal
25
, no. 
4
(November):
807
825
. https://doi.org/10.1139/t88-089
9.
Bentil
,
O. T.
and
Zhou
C.
.
2022
. “
Effects of Temperature and Thermal Cycles on the Elastic Shear Modulus of Saturated Clay
.”
Journal of Geotechnical and Geoenvironmental Engineering
148
, no. 
7
(July): 06022006. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002822
10.
Brandl
,
H.
2006
. “
Energy Foundations and Other Thermo-active Ground Structures
.”
Geotechnique
56
, no. 
2
(March):
81
122
. https://doi.org/10.1680/geot.2006.56.2.81
11.
Campanella
,
R. G.
and
Mitchell
J. K.
.
1968
. “
Influence of Temperature Variations on Soil Behavior
.”
Journal of the Soil Mechanics and Foundations Division
94
, no. 
3
(May):
709
734
. https://doi.org/10.1061/JSFEAQ.0001136
12.
Cekerevac
,
C.
and
Laloui
L.
.
2004
. “
Experimental Study of Thermal Effects on the Mechanical Behaviour of a Clay
.”
International Journal for Numerical and Analytical Methods in Geomechanics
28
, no. 
3
(March):
209
228
. https://doi.org/10.1002/nag.332
13.
Cui
,
Y. J.
,
Sultan
N.
, and
Delage
P.
.
2000
. “
A Thermomechanical Model for Saturated Clays
.”
Canadian Geotechnical Journal
37
, no. 
3
(June):
607
620
. https://doi.org/10.1139/t99-111
14.
Dyvik
,
R.
and
Madshus
C.
.
1985
.
Lab Measurements of Gmax Using Bender Elements, Report No. 161
.
Oslo, Norway
:
Norwegian Geotechnical Institute.
15.
Fam
,
M.
and
Santamarina
C.
.
1995
. “
Study of Geoprocesses with Complementary Mechanical and Electromagnetic Wave Measurements in an Oedometer
.”
Geotechnical Testing Journal
18
, no. 
3
(September):
307
314
. https://doi.org/10.1520/GTJ10999J
16.
Ghaaowd
,
I.
and
McCartney
J. S.
.
2022
. “
Centrifuge Modeling Methodology for Energy Pile Pullout from Saturated Soft Clay
.”
Geotechnical Testing Journal
45
, no. 
2
(March/April):
332
354
. https://doi.org/10.1520/GTJ20210062
17.
Ghaaowd
,
I.
,
Takai
A.
,
Katsumi
T.
, and
McCartney
J. S.
.
2017
. “
Pore Water Pressure Prediction for Undrained Heating of Soils
.”
Environmental Geotechnics
4
, no. 
2
(April):
70
78
. https://doi.org/10.1680/jenge.15.00041
18.
Ghaaowd
,
I.
,
McCartney
J. S.
, and
Saboya
F.
.
2022
. “
Centrifuge Modeling of Temperature Effects on the Pullout Capacity of Torpedo Piles in Soft Clay
.”
Soils and Rocks
45
, no. 
1
(January–March): e2022000822. https://doi.org/10.28927/SR.2022.000822
19.
Ghayoomi
,
M.
and
McCartney
J. S.
.
2011
. “
Measurement of Small-Strain Shear Moduli of Partially Saturated Sand during Infiltration in a Geotechnical Centrifuge
.”
Geotechnical Testing Journal
34
, no. 
5
:
503
513
. https://doi.org/10.1520/GTJ103608
20.
Hardin
,
B. O.
and
Black
W. L.
.
1969
. “
Closure to ‘Vibration Modulus of Normally Consolidated Clay.’
,”
Journal of the Soil Mechanics and Foundations Division
95
, no. 
6
(November):
1531
1537
. https://doi.org/10.1061/JSFEAQ.0001364
21.
Hardin
,
B. O.
and
Blandford
G. E.
.
1989
. “
Elasticity of Particulate Materials
.”
Journal of Geotechnical Engineering
115
, no. 
6
(June):
788
805
. https://doi.org/10.1061/(ASCE)0733-9410(1989)115:6(788)
22.
Hillel
,
D.
1980
.
Fundamentals of Soil Physics
.
New York
:
Academic Press
. https://doi.org/10.1016/C2009-0-03109-2
23.
Houston
,
S. L.
,
Houston
W. N.
, and
Williams
N. D.
.
1985
. “
Thermo-mechanical Behavior of Seafloor Sediments
.”
Journal of Geotechnical Engineering
111
, no. 
11
(November):
1249
1263
. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:11(1249)
24.
Hueckel
,
T.
and
Baldi
G.
.
1990
. “
Thermoplasticity of Saturated Clays: Experimental Constitutive Study
.”
Journal of Geotechnical Engineering
116
, no. 
12
(December):
1778
1796
. https://doi.org/10.1061/(ASCE)0733-9410(1990)116:12(1778)
25.
Hueckel
,
T.
and
Borsetto
M.
.
1990
. “
Thermoplasticity of Saturated Soils and Shales: Constitutive Equations
.”
Journal of Geotechnical Engineering
116
, no. 
12
(December):
1765
1777
. https://doi.org/10.1061/(ASCE)0733-9410(1990)116:12(1765)
26.
Ishihara
,
K.
1996
.
Soil Behaviour in Earthquake Geotechnics
.
Oxford, UK
:
Oxford University Press
.
27.
Khosravi
,
A.
and
McCartney
J. S.
.
2012
. “
Impact of Hydraulic Hysteresis on the Small-Strain Shear Modulus of Low Plasticity Soils
.”
Journal of Geotechnical and Geoenvironmental Engineering
138
, no. 
11
(November):
1326
1333
. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000713
28.
Kuntiwattanakul
,
P.
,
Towhata
I.
,
Ohishi
K.
, and
Seko
I.
.
1995
. “
Temperature Effects on Undrained Shear Characteristics of Clay
.”
Soils and Foundations
35
, no. 
1
(March):
147
162
. https://doi.org/10.3208/sandf1972.35.147
29.
Laloui
,
L.
and
Cekerevac
C.
.
2003
. “
Thermo-plasticity of Clays: An Isotropic Yield Mechanism
.”
Computers and Geotechnics
30
, no. 
8
(December):
649
660
. https://doi.org/10.1016/j.compgeo.2003.09.001
30.
Laloui
,
L.
,
Nuth
M.
, and
Vulliet
L.
.
2006
. “
Experimental and Numerical Investigations of the Behaviour of a Heat Exchanger Pile
.”
International Journal for Numerical and Analytical Methods in Geomechanics
30
, no. 
8
(July):
763
781
. https://doi.org/10.1002/nag.499
31.
Mair
,
R. J.
1993
. “
Unwin Memorial Lecture 1992: Developments in Geotechnical Engineering Research: Applications to Tunnels and Deep Excavations
.”
Proceedings of the Institution of Civil Engineers - Civil Engineering
97
, no. 
1
(February):
27
41
. https://doi.org/10.1680/icien.1993.22378
32.
McCartney
,
J. S.
and
Khosravi
A.
.
2013
. “
Field-Monitoring System for Suction and Temperature Profiles under Pavements
.”
Journal of Performance of Constructed Facilities
27
, no. 
6
(December):
818
825
. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000362
33.
Murphy
,
K. D.
,
McCartney
J. S.
, and
Henry
K. S.
.
2015
. “
Thermo-mechanical Response Tests on Energy Foundations with Different Heat Exchanger Configurations
.”
Acta Geotechnica
10
, no. 
2
(April):
179
195
. https://doi.org/10.1007/s11440-013-0298-4
34.
Pennington
,
D. S.
,
Nash
D. F. T.
, and
Lings
M. L.
.
2001
. “
Horizontally Mounted Bender Elements for Measuring Anisotropic Shear Moduli in Triaxial Clay Specimens
.”
Geotechnical Testing Journal
24
, no. 
2
(June):
133
144
. https://doi.org/10.1520/GTJ11333J
35.
Pothiraksanon
,
C.
,
Bergado
D. T.
, and
Abuel-Naga
H. M.
.
2010
. “
Full-Scale Embankment Consolidation Test Using Prefabricated Vertical Thermal Drains
.”
Soil and Foundation
50
, no. 
5
(October):
599
608
. https://doi.org/10.3208/sandf.50.599
36.
Samarakoon
,
R. A.
and
McCartney
J. S.
.
2020
a. “
Simulation of Prefabricated Thermal Drains in Soft Clay
.” In
GeoAmericas 2020: Fourth Pan-American Conference on Geosynthetics
. https://web.archive.org/web/20230828131153/https://library.geosyntheticssociety.org/wp-content/uploads/resources/proceedings/122021/PPT-eposter-trab-aceito-0147-1.pdf
37.
Samarakoon
,
R. A.
and
McCartney
J. S.
.
2020
b. “
Effect of Drained Heating and Cooling on the Preconsolidation Stress of Saturated Normally Consolidated Clays
.” In
Geo-Congress 2020: Foundations, Soil Improvement, and Erosion, 620–629
.
Reston, VA
:
American Society of Civil Engineers
. https://doi.org/10.1061/9780784482780.061
38.
Samarakoon
,
R. A.
and
McCartney
J. S.
.
2021
. “
Performance of Prefabricated Thermal Drains in Soft Clay
.” In
Geosynthetics Conference 2021
, edited by
Beauregard
M.
and
Nicks
J. E.
,
433
444
.
Red Hook, NY
:
Curran Associates
.
39.
Samarakoon
,
R.
and
McCartney
J. S.
.
2023
. “
Simulation of Thermal Drains Using a New Constitutive Model for Thermal Volume Change of Normally Consolidated Clays
.”
Computers and Geotechnics
153
(January): 105100. https://doi.org/10.1016/j.compgeo.2022.105100
40.
Samarakoon
,
R.
,
Ghaaowd
I.
, and
McCartney
J. S.
.
2018
. “
Impact of Drained Heating and Cooling on Undrained Shear Strength of Normally Consolidated Clay
.” In
International Symposium on Energy Geotechnics: SEG 2018
, edited by
Ferrari
A.
and
Laloui
L.
,
243
249
.
Cham, Switzerland
:
Springer
. https://doi.org/10.1007/978-3-319-99670-7_31
41.
Samarakoon
,
R. A.
,
Kreitzer
I. L.
, and
McCartney
J. S.
.
2022
. “
Impact of Initial Effective Stress on the Thermo-mechanical Behavior of Normally Consolidated Clay
.”
Geomechanics for Energy and the Environment
32
(December): 100407. https://doi.org/10.1016/j.gete.2022.100407
42.
Shirley
,
D. J.
and
Hampton
L. D.
.
1978
. “
Shear-Wave Measurements in Laboratory Sediments
.”
The Journal of the Acoustical Society of America
63
, no. 
2
(February):
607
613
. https://doi.org/10.1121/1.381760
43.
Stewart
,
M. A.
and
McCartney
J. S.
.
2014
. “
Centrifuge Modeling of Soil-Structure Interaction in Energy Foundations
.”
Journal of Geotechnical and Geoenvironmental Engineering
140
, no. 
4
(April): 04013044. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001061
44.
Uchaipichat
,
A.
and
Khalili
N.
.
2009
. “
Experimental Investigation of Thermo-hydro-mechanical Behaviour of an Unsaturated Silt
.”
Géotechnique
59
, no. 
4
(May):
339
353
. https://doi.org/10.1680/geot.2009.59.4.339
45.
Vahedifard
,
F.
,
Thota
S. K.
,
Cao
T. D.
,
Samarakoon
R. A.
, and
McCartney
J. S.
.
2020
. “
A Temperature-Dependent Model for Small-Strain Shear Modulus of Unsaturated Soils
.”
Journal of Geotechnical and Geoenvironmental Engineering
146
, no. 
12
(December): 04020136. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002406
46.
Valle-Molina
,
C.
and
Stokoe
K. H.
.
2012
. “
Seismic Measurements in Sand Specimens with Varying Degrees of Saturation Using Piezoelectric Transducers
.”
Canadian Geotechnical Journal
49
, no. 
6
(June):
671
685
. https://doi.org/10.1139/t2012-033
47.
Viggiani
,
G.
and
Atkinson
J. H.
.
1995
. “
Interpretation of Bender Element Tests
.”
Géotechnique
45
, no. 
1
(March):
149
154
. https://doi.org/10.1680/geot.1995.45.1.149
This content is only available via PDF.
You do not currently have access to this content.