Abstract

The sustainable use of resources requires new strategies to transform industrial byproducts into raw materials for other applications. This approach, inspired by circular economy fundamentals, can be successfully applied in transportation infrastructures where a significant amount of natural raw materials is generally required. Slags from the steelmaking process in electric arc furnaces are generally of two types: oxidizing (black colored) and reducing (lighter colored). In Portugal, the oxidizing steel slag or electric arc furnace (EAF) with controlled production has been certified as “inert steel aggregate for construction,” having high strength and stiffness when compared to conventional natural aggregates. However, because of the lack of fines, EAF usually requires a milling process with increased costs and CO2 emissions. This work studies the mixture of the two types of slags, because the reducing slag (also called ladle slag) is a fine powder with cementing properties that can enhance the behavior of the mixture while avoiding the milling process. Toward the application in granular layers of transport infrastructures, the testing procedures to study the geotechnical behavior of this innovative stabilized mixture are discussed combining chemical, durability, environmental, and hydromechanical analysis. Seismic wave velocity measurements with ultrasonic transducers provide the elastic stiffness evolution with time derived from the cementation given by the ladle slag. Unconfined compression strength and permeability results were used to propose an index parameter to correlate the mixture dosage to the observed hydromechanical performance. Durability measurements with wetting and drying cycles, as well as swelling and leaching test results, are also presented.

References

1.
ASTM International.
1996
.
Standard Test Methods for Wetting and Drying Compacted Soil-Cement Mixtures (Withdrawn)
. ASTM D559-96. West Conshohocken, PA:
ASTM International
, approved May 10,
1996
. https://doi.org/10.1520/D0559-96
2.
ASTM International.
1999
.
Standard Test Method for Potential Expansion of Aggregates from Hydration Reactions (Superseded)
. ASTM D4792-99. West Conshohocken, PA:
ASTM International
, approved June 10,
1999
. https://doi.org/10.1520/D4792-99
3.
ASTM International.
2003
.
Standard Specification for Graded Aggregate Material for Bases or Subbases for Highways or Airports
. ASTM D2940-03. West Conshohocken, PA:
ASTM International
, approved February 10,
2003
.
4.
ASTM International.
2021
.
Standard Test Method for California Bearing Ratio (CBR) of Laboratory-Compacted Soils
. ASTM D1883-21. West Conshohocken, PA:
ASTM International
, approved November 15,
2021
. https://doi.org/10.1520/D1883-21
5.
Baldovino
,
J. de J. A.
,
Izzo
R. L. dos S.
,
Feltrim
F.
, and
da Silva
É. R.
.
2020
. “
Experimental Study on Guabirotuba’s Soil Stabilization Using Extreme Molding Conditions
.”
Geotechnical and Geological Engineering
38
, no. 
3
(June):
2591
2607
. https://doi.org/10.1007/s10706-019-01171-x
6.
British Standard Institution (BSI).
1998
.
BSI–BS EN 1744-1: Tests for Chemical Properties of Aggregates–Part 1: Chemical Analysis
. ICS 91.100.20. London:
British Standard Institution
.
7.
Consoli
,
N. C.
,
Foppa
D.
,
Festugato
L.
, and
Heineck
K. S.
.
2007
. “
Key Parameters for Strength Control of Artificially Cemented Soils
.”
Journal of Geotechnical and Geoenvironmental Engineering
133
, no. 
2
(February):
197
205
. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:2(197)
8.
Consoli
,
N. C.
,
Párraga Morales
D.
, and
Saldanha
R. B.
.
2021
. “
A New Approach for Stabilization of Lateritic Soil with Portland Cement and Sand: Strength and Durability
.”
Acta Geotechnica
16
, no. 
12
(May):
1473
1486
. https://doi.org/10.1007/s11440-020-01136-y
9.
Consoli
,
N. C.
,
Samaniego
R. A. Q.
, and
Villalba
N. M. K.
.
2016
. “
Durability, Strength, and Stiffness of Dispersive Clay–Lime Blends
.”
Journal of Materials in Civil Engineering
28
, no. 
11
(November): 04016124. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001632
10.
Consoli
,
N. C.
,
Viana da Fonseca
A.
,
Silva
S. R.
,
Cruz
R. C.
, and
Fonini
A.
.
2012
. “
Parameters Controlling Stiffness and Strength of Artificially Cemented Soils
.”
Géotechnique
62
, no. 
2
(February):
177
183
. https://doi.org/10.1680/geot.8.P.084
11.
Cruz
,
N.
,
Rios
S.
,
Fortunato
E.
,
Rodrigues
C.
,
Cruz
J.
,
Mateus
C.
, and
Ramos
C.
.
2017
. “
Characterization of Soil Treated with Alkali-Activated Cement in Large-Scale Specimens
.”
Geotechnical Testing Journal
40
, no. 
4
(July):
618
629
. https://doi.org/10.1520/GTJ20160211
12.
Delgado
,
B. G.
,
Viana da Fonseca
A.
,
Fortunato
E.
,
Paixão
A.
, and
Alves
R.
.
2021
. “
Geomechanical Assessment of an Inert Steel Slag Aggregate as an Alternative Ballast Material for Heavy Haul Rail Tracks
.”
Construction and Building Materials
279
(
April
): 122438. https://doi.org/10.1016/j.conbuildmat.2021.122438
13.
European Committee for Standardization (CEN).
2002
.
UNE EN 12457-1:2003 Characterisation of Waste - Leaching - Compliance Test for Leaching of Granular Waste Materials and Sludges - Part 1: One Stage Batch Test at a Liquid to Solid Ratio of 2 l/kg for Materials with High Solid Content and with Particle Size below 4 mm (without or with Size Reduction)
.
Brussels, Belgium
:
European Committee for Standardization
.
14.
Ferreira
,
C.
,
Rios
S.
,
Cristelo
N.
, and
Viana da Fonseca
A.
.
2021
. “
Evolution of the Optimum Ultrasonic Testing Frequency of Alkali-Activated Soil-Ash
.”
Géotechnique Letters
11
, no. 
3
(September):
158
163
. https://doi.org/10.1680/jgele.21.00041
15.
Gomes Correia
,
A. G.
,
Roque
A. J.
,
Reis Ferreira
S. M.
, and
Fortunato
E.
.
2012
. “
Case Study to Promote the Use of Industrial Byproducts: The Relevance of Performance Tests
.”
Journal of ASTM International
9
, no. 
2
:
1
18
. https://doi.org/10.1520/JAI103705
16.
Head
,
K. H.
1998
.
Manual of Soil Laboratory Testing - Volume 3–Effective Stress Tests
, 2nd ed.
Hoboken, NJ
:
John Wiley & Sons
.
17.
Hoch
,
B. Z.
,
Diambra
A.
,
Ibraim
E.
,
Festugato
L.
, and
Consoli
N. C.
.
2022
. “
Strength and Stiffness of Compacted Chalk Putty–Cement Blends
.”
Acta Geotechnica
17
(
July
):
2955
2969
. https://doi.org/10.1007/s11440-021-01415-2
18.
Hoy
,
M.
,
Rachan
R.
,
Horpibulsuk
S.
,
Arulrajah
A.
, and
Mirzababaei
M.
.
2017
. “
Effect of Wetting-Drying Cycles on Compressive Strength and Microstructure of Recycled Asphalt Pavement-Fly Ash Geopolymer
.”
Construction and Building Materials
144
(
July
):
624
634
. https://doi.org/10.1016/j.conbuildmat.2017.03.243
19.
Hussain
,
A.
and
Hussaini
S. K. K.
.
2022
. “
Use of Steel Slag as Railway Ballast: A Review
.”
Transportation Geotechnics
35
(
July
): 100779. https://doi.org/10.1016/j.trgeo.2022.100779
20.
IPQ.
1966
.
Água: determinação do valor do pH. NP 411
. Caparica, Portugal:
Instituto Português da Qualidade
.
21.
IPQ.
1996
.
Qualidade da água: determinação da condutividade eléctrica. NP 411
. Caparica, Portugal:
Instituto Português da Qualidade
.
22.
Japanese Standards Association (JSA).
1992
.
JSA - JIS A 5015: Iron and Steel Slag for Road Construction
. ICS 91.100.15. Tokyo, Japan:
Japanese Standards Association
.
23.
Kambole
,
C.
,
Paige-Green
P.
,
Kupolati
W. K.
,
Ndambuki
J. M.
, and
Adeboje
A. O.
.
2017
. “
Basic Oxygen Furnace Slag for Road Pavements: A Review of Material Characteristics and Performance for Effective Utilization in Southern Africa
.”
Construction and Building Materials
148
(
September
):
618
631
. https://doi.org/10.1016/j.conbuildmat.2017.05.036
24.
Li
,
W.
,
Lang
L.
,
Wang
D.
,
Wu
Y.
, and
Li
F.
.
2018
. “
Investigation on the Dynamic Shear Modulus and Damping Ratio of Steel Slag Sand Mixtures
.”
Construction and Building Materials
162
(
February
):
170
180
. https://doi.org/10.1016/j.conbuildmat.2017.12.026
25.
Little
,
D. N.
1995
.
Handbook for Stabilization of Pavement Subgrades and Base Courses with Lime
.
Dubuque, Iowa
:
Kendall/Hunt Publishing Company
.
26.
Maghool
,
F.
,
Arulrajah
A.
,
Horpibulsuk
S.
, and
Du
Y.-J.
.
2017
. “
Laboratory Evaluation of Ladle Furnace Slag in Unbound Pavement-Base/Subbase Applications
.”
Journal of Materials in Civil Engineering
29
, no. 
2
(February): 04016197. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001724
27.
Maghool
,
F.
,
Arulrajah
A.
,
Suksiripattanapong
C.
,
Horpibulsuk
S.
, and
Mohajerani
A.
.
2019
. “
Geotechnical Properties of Steel Slag Aggregates: Shear Strength and Stiffness
.”
Soils and Foundations
59
(
October
):
1591
1601
. https://doi.org/10.1016/j.sandf.2019.03.016
28.
Manso
,
J. M.
,
Losañez
M.
,
Polanco
J. A.
, and
Gonzalez
J. J.
.
2005
. “
Ladle Furnace Slag in Construction
.”
Journal of Materials in Civil Engineering
17
, no. 
5
(October):
513
518
. https://doi.org/10.1061/(ASCE)0899-1561(2005)17:5(513)
29.
Marinho
,
A. L. B.
,
Santos
C. M. M.
,
de Carvalho
J. M. F.
,
Mendes
J. C.
,
Brigolini
G. J.
, and
Peixoto
R. A. F.
.
2017
. “
Ladle Furnace Slag as Binder for Cement-Based Composites
.”
Journal of Materials in Civil Engineering
29
, no. 
11
(November): 04017207. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002061
30.
Montenegro-Cooper
,
J. M.
,
Celemín-Matachana
M.
,
Cañizal
J.
, and
González
J.
.
2019
. “
Study of the Expansive Behavior of Ladle Furnace Slag and its Mixture with Low Quality Natural Soils
.”
Construction and Building Materials
203
(
April
):
201
209
. https://doi.org/10.1016/j.conbuildmat.2019.01.040
31.
NTG (Northern Territory Government).
2015
.
Standard Specification for Roadworks v5.3
. Infrastructure Department. Northern Territory, Australia:
Department of Infrastructure, Planning, and Logistics
.
32.
PTM (Pennsylvania Testing Method).
1978
.
PTM 130 Method: Test Method for Evaluating the Potential for Steel Slag Expansion
.
Philadelphia, PA
:
Pennsylvania Department of Transportation
.
33.
Rios
,
S.
,
Cristelo
N.
,
Miranda
T.
,
Araújo
N.
,
Oliveira
J.
, and
Lucas
E.
.
2018
. “
Increasing the Reaction Kinetics of Alkali-Activated Fly Ash Binders for Stabilization of a Silty Sand Pavement Sub-base
.”
Road Materials and Pavement Design
19
, no. 
1
:
201
222
. https://doi.org/10.1080/14680629.2016.1251959
34.
Rios
,
S.
,
Cristelo
C.
,
Viana da Fonseca
A.
, and
Ferreira
C.
.
2017
. “
Stiffness Behavior of Soil Stabilized with Alkali-Activated Fly Ash from Small to Large Strains
.”
International Journal of Geomechanics
17
, no. 
3
(March): 04016087. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000783
35.
Rios
,
S.
,
Viana da Fonseca
A.
, and
Baudet
B. A.
.
2012
. “
Effect of the Porosity/Cement Ratio on the Compression of Cemented Soil
.”
Journal of Geotechnical and Geoenvironmental Engineering
138
, no. 
11
(November):
1422
1426
. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000698
36.
Rios
,
S.
,
Viana da Fonseca
A.
, and
Baudet
B. A.
.
2014
. “
On the Shearing Behaviour of an Artificially Cemented Soil
.”
Acta Geotechnica
9
, no. 
2
(April):
215
226
. https://doi.org/10.1007/s11440-013-0242-7
37.
Rios
,
S.
,
Viana da Fonseca
A.
,
Consoli
N. C.
,
Floss
M.
, and
Cristelo
N.
.
2013
. “
Influence of Grain Size and Mineralogy on the Porosity/Cement Ratio
.”
Géotechnique Letters
3
, no. 
3
(September):
130
136
. https://doi.org/10.1680/geolett.13.00003
38.
SAMARIS. n.d “
Deliverable 29 – Guide on Techniques for Recycling in Pavement Structures, SAMARIS Project – Sustainable and Advanced Materials for Road Infrastructure, Competitive and Sustainable Growth (GROWTH) Programme, SAMARIS SAM-D32
.” Paper presented at the Sustainable and Advanced Materials for Road Infrastructure, Final Seminar of the SAMARIS Project, Geneva, Switzerland, February 16–17,
2006
.
39.
Viana da Fonseca
,
A.
,
Ferreira
C.
, and
Fahey
M.
.
2009
. “
A Framework Interpreting Bender Element Tests, Combining Time-Domain and Frequency-Domain Methods
.”
Geotechnical Testing Journal
32
, no. 
2
:
91
107
. https://doi.org/10.1520/GTJ100974
This content is only available via PDF.
You do not currently have access to this content.