Abstract

Experimental evidence shows that earthquake induced liquefaction can occur more than once in sandy soils. Moreover, despite an increase in soil density caused by the dissipation of the excess pore pressure induced by earthquakes, the liquefaction resistance of soils that have experienced liquefaction may be lower than that of virgin soils. This paper offers insight into this topic starting from the analysis of the undrained monotonic behavior of post-liquefied sands by means of tests performed with a simple shear cell equipped with flexible boundaries, which maintains a constant diameter to guarantee the “K0-condition.” The control system of cyclic, reconsolidation, and monotonic phases is described in detail. The experimental results show that neither the relative density, effective confining stress, cyclic stress ratio, nor the direction of shear strain play important roles in the monotonic behavior of post-liquefied soils. Moreover, the comparison between the monotonic response of virgin and post-liquefied soils (prepared by moist tamping technique) shows that it is not affected by the stress–strain history experienced by soils. It can be explained through a microstructural interpretation. According to which, the initial soil fabric generated with the moist tamping method and that formed during liquefaction remain almost unchanged because of the rotation of principal stress directions occurring during simple shear tests. A further confirmation is given by the results of tests performed on specimens prepared by air pluviation method.

References

1.
Airey
,
D. W.
and
Wood
D. M.
.
1987
. “
An Evaluation of Direct Simple Shear Tests on Clay
.”
Géotechnique
37
, no. 
1
(March):
25
35
. https://doi.org/10.1680/geot.1987.37.1.25
2.
Amini
,
F. P.
and
Wang
G.
. Forthcoming. “
Integrated Effects of Inherent and Induced Anisotropy on Reliquefaction Resistance of Toyoura Sand with Different Strain Histories
.”
Géotechnique
. Published ahead of print, May 17,
2023
. https://doi.org/10.1680/jgeot.22.00075
3.
Asadi
,
M. S.
,
Orense
R. P.
,
Asadi
M. B.
, and
Pender
M. J.
.
2019
. “
Post-liquefaction Behavior of Natural Pumiceous Sands
.”
Soil Dynamics and Earthquake Engineering
118
(March):
65
74
. https://doi.org/10.1016/j.soildyn.2018.12.009
4.
Astuto
,
G.
,
Molina-Gómez
F.
,
Bilotta
E.
,
Viana da Fonseca
A.
, and
Flora
A.
.
2023
. “
Some Remarks on the Assessment of P-Wave Velocity in Laboratory Tests for Evaluating the Degree of Saturation
.”
Acta Geotechnica
18
, no. 
2
(February):
777
790
. https://doi.org/10.1007/s11440-022-01610-9
5.
Bjerrum
,
L.
and
Landva
A.
.
1966
. “
Direct Simple-Shear Tests on a Norwegian Quick Clay
.”
Géotechnique
16
, no. 
1
(March):
1
20
. https://doi.org/10.1680/geot.1966.16.1.1
6.
Bray
,
J. D.
and
Macedo
J.
.
2017
. “
6th Ishihara Lecture: Simplified Procedure for Estimating Liquefaction-Induced Building Settlement
.”
Soil Dynamics and Earthquake Engineering
102
(November):
215
231
. https://doi.org/10.1016/j.soildyn.2017.08.026
7.
Cappellaro
,
C.
,
Cubrinovski
M.
,
Chiaro
G.
,
Stringer
M. E.
,
Bray
J. D.
, and
Riemer
M. F.
. n.d “
Undrained Cyclic Direct Simple Shear Testing of Christchurch Sandy Soils
.” Paper presented at the 20th Symposium of the New Zealand Geotechnical Society, Napier, New Zealand, November 24–26,
2017
.
8.
Carraro
,
J. A. H.
2017
. “
Analysis of Simple Shear Tests with Cell Pressure Confinement
.”
Geomechanics and Geoengineering
12
, no. 
3
:
169
180
. https://doi.org/10.1080/17486025.2016.1193635
9.
Casagrande
,
A.
n.d “
Liquefaction and Cyclic Deformation of Sands: A Critical Review
.” Paper presented at the Fifth Panamerican Conference on Soil Mechanics and Foundation Engineering, Buenes Aires, Argentina, November
1975
.
10.
D’Elia
,
B.
,
Lanzo
G.
, and
Pagliaroli
A.
.
2003
. “
Small-Strain Stiffness and Damping of Soils in a Direct Simple Shear Device
.” Paper presented at the Pacific Conference on Earthquake Engineering, Christchurch, New Zealand, February 13–15,
2003
.
11.
Dashti
,
S.
,
Bray
J. D.
,
Pestana
J. M.
,
Riemer
M.
, and
Wilson
D.
.
2010
. “
Mechanisms of Seismically Induced Settlement of Buildings with Shallow Foundations on Liquefiable Soil
.”
Journal of Geotechnical and Geoenvironmental Engineering
136
, no. 
1
(January):
151
164
. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000179
12.
Dobry
,
R.
,
Thevanayagam
S.
,
El-Sekelly
W.
,
Abdoun
T.
, and
Huang
Q.
.
2019
. “
Large-Scale Modeling of Preshaking Effect on Liquefaction Resistance, Shear Wave Velocity, and CPT Tip Resistance of Clean Sand
.”
Journal of Geotechnical and Geoenvironmental Engineering
145
, no. 
10
(October): 04019065. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002080
13.
Doherty
,
J.
and
Fahey
M.
.
2011
. “
Three-Dimensional Finite Element Analysis of the Direct Simple Shear Test
.”
Computers and Geotechnics
38
, no. 
7
(November):
917
924
. https://doi.org/10.1016/j.compgeo.2011.05.005
14.
Flora
,
A.
,
Chiaradonna
A.
,
Bilotta
E.
,
Fasano
G.
,
Mele
L.
,
Lirer
S.
, and
Fanti
F.
.
2019
. “
Field Tests to Assess the Effectiveness of Ground Improvement for Liquefaction Mitigation
.” In
Earthquake Geotechnical Engineering for Protection and Development of Environment and Constructions
, 1st ed.,
740
752
.
Boca Raton, FL
:
CRC Press
.
15.
Flora
,
A.
,
Bilotta
E.
,
Chiaradonna
A.
,
Lirer
S.
,
Mele
L.
, and
Pingue
L.
.
2021
. “
A Field Trial to Test the Efficiency of Induced Partial Saturation and Horizontal Drains to Mitigate the Susceptibility of Soils to Liquefaction
.”
Bulletin of Earthquake Engineering
19
, no. 
10
(August):
3835
3864
. https://doi.org/10.1007/s10518-020-00914-z
16.
Ha
,
I.-S.
,
Olson
S. M.
,
Seo
M.-W.
, and
Kim
M.-M.
.
2011
. “
Evaluation of Reliquefaction Resistance Using Shaking Table Tests
.”
Soil Dynamics and Earthquake Engineering
31
, no. 
4
(April):
682
691
. https://doi.org/10.1016/j.soildyn.2010.12.008
17.
Ishihara
,
K.
1993
. “
Liquefaction and Flow Failure during Earthquakes
.”
Géotechnique
43
, no. 
3
(September):
351
451
. https://doi.org/10.1680/geot.1993.43.3.351
18.
Ishihara
,
K.
and
Okada
S.
.
1982
. “
Effects of Large Preshearing on Cyclic Behavior of Sand
.”
Soils and Foundations
22
, no. 
3
(September):
109
125
. https://doi.org/10.3208/sandf1972.22.3_109
19.
Ishihara
,
K.
and
Yoshimine
M.
.
1992
. “
Evaluation of Settlements in Sand Deposits Following Liquefaction during Earthquakes
.”
Soils and Foundations
32
, no. 
1
(March):
173
188
. https://doi.org/10.3208/sandf1972.32.173
20.
Khashila
,
M.
,
Hussien
M. N.
,
Karray
M.
, and
Chekired
M.
.
2021
. “
Liquefaction Resistance from Cyclic Simple and Triaxial Shearing: A Comparative Study
.”
Acta Geotechnica
16
, no. 
6
(June):
1735
1753
. https://doi.org/10.1007/s11440-020-01104-6
21.
Kwan
,
W. S.
and
El Mohtar
C.
.
2020
. “
A Review on Sand Sample Reconstitution Methods and Procedures for Undrained Simple Shear Test
.”
International Journal of Geotechnical Engineering
14
, no. 
8
:
851
859
. https://doi.org/10.1080/19386362.2018.1461988
22.
Li
,
X. S.
and
Wang
Y.
.
1998
. “
Linear Representation of Steady-State Line for Sand
.”
Journal of Geotechnical and Geoenvironmental Engineering
124
, no. 
12
(December):
1215
1217
. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:12(1215)
23.
Lirer
,
S.
,
Flora
A.
, and
Nicotera
M. V.
.
2011
. “
Some Remarks on the Coefficient of Earth Pressure at Rest in Compacted Sandy Gravel
.”
Acta Geotechnica
6
, no. 
1
(March):
1
12
. https://doi.org/10.1007/s11440-010-0131-2
24.
Lombardi
,
D.
,
Bhattacharya
S.
,
Hyodo
M.
, and
Kaneko
T.
.
2014
. “
Undrained Behaviour of Two Silica Sands and Practical Implications for Modelling SSI in Liquefiable Soils
.”
Soil Dynamics and Earthquake Engineering
66
(November):
293
304
. https://doi.org/10.1016/j.soildyn.2014.07.010
25.
Mao
,
X.
and
Fahey
M.
.
2003
. “
Behaviour of Calcareous Soils in Undrained Cyclic Simple Shear
.”
Géotechnique
53
, no. 
8
(October):
715
727
. https://doi.org/10.1680/geot.2003.53.8.715
26.
Mele
,
L.
Experimental and Theoretical Investigation on Cyclic Liquefaction Mechanisms and on the Effects of Some Mitigation Measures
.” PhD diss.,
Università degli Studi di Napoli Federico II
,
2020
.
27.
Mele
,
L.
Forthcoming. “
Experimental Study with Complete Stress State Interpretation of Undrained Monotonic and Cyclic Simple Shear Tests with Flexible Boundaries
.”
Acta Geotechnica
. Published ahead of print, May 18, 2023. https://doi.org/10.1007/s11440-023-01907-3
28.
Mele
,
L.
,
Lirer
S.
, and
Flora
A.
.
2019
a. “
The Effect of Confinement in Liquefaction Tests Carried Out in a Cyclic Simple Shear Apparatus
.” In
Seventh International Symposium on Deformation Characteristics of Geomaterials
, 08002.
Les Ulis, France
:
EDP Sciences
.
29.
Mele
,
L.
,
Lirer
S.
, and
Flora
A.
.
2019
b. “
The Effect of Densification on Pieve di Cento Sands in Cyclic Simple Shear Tests
.” In
National Conference of the Researchers of Geotechnical Engineering, Geotechnical Research for Land Protection and Development
,
446
453
.
Cham, Switzerland
:
Springer
.
30.
Mele
,
L.
,
Tian
J. T.
,
Lirer
S.
,
Flora
A.
, and
Koseki
J.
.
2019
. “
Liquefaction Resistance of Unsaturated Sands: Experimental Evidence and Theoretical Interpretation
.”
Géotechnique
69
, no. 
6
(June):
541
553
. https://doi.org/10.1680/jgeot.18.P.042
31.
Mele
,
L.
,
Lirer
S.
, and
Flora
A.
.
2022
. “
Evaluation of Cyclic Resistance and Postliquefaction Volumetric Strains of Intermediate Soils
.”
Journal of Geotechnical and Geoenvironmental Engineering
148
, no. 
10
(October): 06022009. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002897
32.
Morimoto
,
T.
,
Aoyagi
Y.
, and
Koseki
J.
.
2019
. “
Effects of Small and Large Shear Histories on Multiple Liquefaction Properties of Sand with Initial Static Shear
.”
Soils and Foundations
59
, no. 
6
(December):
2024
2035
. https://doi.org/10.1016/j.sandf.2019.11.001
33.
Mulilis
,
J. P.
,
Seed
H. B.
,
Chan
C. K.
,
Mitchell
J. K.
, and
Arulanandan
K.
.
1977
. “
Effects of Sample Preparation on Sand Liquefaction
.”
Journal of the Geotechnical Engineering Division
103
, no. 
2
(February):
91
108
. https://doi.org/10.1061/AJGEB6.0000387
34.
Murthy
,
T. G.
,
Loukidis
D.
,
Carraro
J. A. H.
,
Prezzi
M.
, and
Salgado
R.
.
2007
. “
Undrained Monotonic Response of Clean and Silty Sands
.”
Géotechnique
57
, no. 
3
(April):
273
288
. https://doi.org/10.1680/geot.2007.57.3.273
35.
Nong
,
Z.-Z.
,
Park
S.-S.
, and
Lee
D.-E.
.
2021
. “
Comparison of Sand Liquefaction in Cyclic Triaxial and Simple Shear Tests
.”
Soils and Foundations
61
, no. 
4
(August):
1071
1085
. https://doi.org/10.1016/j.sandf.2021.05.002
36.
Oda
,
M.
,
Kawamoto
K.
,
Suzuki
K.
,
Fujimori
H.
, and
Sato
M.
.
2001
. “
Microstructural Interpretation on Reliquefaction of Saturated Granular Soils under Cyclic Loading
.”
Journal of Geotechnical and Geoenvironmental Engineering
127
, no. 
5
(May):
416
423
. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:5(416)
37.
Porcino
,
D.
and
Caridi
G.
. n.d “
Pre-and Post-liquefaction Response of Sand in Cyclic Simple Shear
.” Paper presented at the Proceedings of Geo-Denver 2007, Boulder, CO, February 18–21,
2007
.
38.
Rahman
,
M. M.
,
Nguyen
H. B. K.
,
Fourie
A. B.
, and
Kuhn
M. R.
.
2021
. “
Critical State Soil Mechanics for Cyclic Liquefaction and Post-liquefaction Behavior: DEM Study
.”
Journal of Geotechnical and Geoenvironmental Engineering
147
, no. 
2
(February): 04020166. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002453
39.
Roscoe
,
K. H.
1953
. “
An Apparatus for the Application of Simple Shear to Soil Samples
.” In
Proceedings of Third International Conference on Soil Mechanics and Foundation Engineering
,
186
191
.
London, UK
:
The International Society for Soil Mechanics and Geotechnical Engineering
.
40.
Roscoe
,
K. H.
1970
. “
The Influence of Strains in Soil Mechanics
.”
Géotechnique
20
, no. 
2
(June):
129
170
. https://doi.org/10.1680/geot.1970.20.2.129
41.
Rouholamin
,
M.
,
Bhattacharya
S.
, and
Orense
R. P.
.
2017
. “
Effect of Initial Relative Density on the Post-liquefaction Behaviour of Sand
.”
Soil Dynamics and Earthquake Engineering
97
(June):
25
36
. https://doi.org/10.1016/j.soildyn.2017.02.007
42.
Sadrekarimi
,
A.
2013
. “
Influence of Fines Content on Liquefied Strength of Silty Sands
.”
Soil Dynamics and Earthquake Engineering
55
(December):
108
119
. https://doi.org/10.1016/j.soildyn.2013.09.008
43.
Sitharam
,
T. G.
,
Vinod
J. S.
, and
Ravishankar
B. V.
.
2009
. “
Post-liquefaction Undrained Monotonic Behaviour of Sands: Experiments and DEM Simulations
.”
Géotechnique
59
, no. 
9
(November):
739
749
. https://doi.org/10.1680/geot.7.00040
44.
Sivathayalan
,
S.
,
Logeswaran
P.
, and
Manmatharajan
V.
.
2015
. “
Cyclic Resistance of a Loose Sand Subjected to Rotation of Principal Stresses
.”
Journal of Geotechnical and Geoenvironmental Engineering
141
, no. 
3
(March): 04014113. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001250
45.
Sze
,
H. Y.
and
Yang
J.
.
2014
. “
Failure Modes of Sand in Undrained Cyclic Loading: Impact of Sample Preparation
.”
Journal of Geotechnical and Geoenvironmental Engineering
140
, no. 
1
(January):
152
169
. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000971
46.
Thevanayagam
,
S.
1998
. “
Effect of Fines and Confining Stress on Undrained Shear Strength of Silty Sands
.”
Journal of Geotechnical and Geoenvironmental Engineering
124
, no. 
6
(June):
479
491
. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:6(479)
47.
Thomas
,
J.
Static, Cyclic and Post Liquefaction Undrained Behaviour of Fraser River Sand
.” Master’s thesis,
University of British Columbia
,
1992
.
48.
Vaid
,
Y. P.
,
Uthayakumar
M.
,
Sivathayalan
S.
,
Robertson
P. K.
, and
Hofmann
B.
. n.d “
Laboratory Testing of Syncrude Sand
.” Paper presented at the Proceedings of the 48th Canadian Geotechnical Conference, Vancouver, Canada, September 25–27,
1995
.
49.
Varghese
,
R.
,
Amuthan
M. S.
,
Boominathan
A.
, and
Banerjee
S.
.
2019
. “
Cyclic and Postcyclic Behaviour of Silts and Silty Sands from the Indo Gangetic Plain
.”
Soil Dynamics and Earthquake Engineering
125
(October): 105750. https://doi.org/10.1016/j.soildyn.2019.105750
50.
Verdugo
,
R.
and
Ishihara
K.
.
1996
. “
The Steady State of Sandy Soils
.”
Soils and Foundations
36
, no. 
2
(June):
81
91
. https://doi.org/10.3208/sandf.36.2_81
51.
Viana da Fonseca
,
A.
,
Soares
M.
, and
Fourie
A. B.
.
2015
. “
Cyclic DSS Tests for the Evaluation of Stress Densification Effects in Liquefaction Assessment
.”
Soil Dynamics and Earthquake Engineering
75
(August):
98
111
. https://doi.org/10.1016/j.soildyn.2015.03.016
52.
Viana da Fonseca
,
A.
,
Cordeiro
D.
, and
Molina-Gómez
F.
.
2021
. “
Recommended Procedures to Assess Critical State Locus from Triaxial Tests in Cohesionless Remoulded Samples
.”
Geotechnics
1
, no. 
1
(September):
95
127
. https://doi.org/10.3390/geotechnics1010006
53.
Viana da Fonseca
,
A.
,
Molina-Gómez
F.
, and
Ferreira
C.
.
2023
. “
Liquefaction Resistance of TP-Lisbon Sand: A Critical State Interpretation Using In Situ and Laboratory Testing
.”
Bulletin of Earthquake Engineering
21
, no. 
2
(January):
767
790
. https://doi.org/10.1007/s10518-022-01577-8
54.
Villet
,
W. C. B.
,
Sitar
N.
, and
Johnson
K. A.
. n.d “
Simple Shear Tests on Highly Overeonsolidated Offshore Silts
.” Paper presented at the Offshore Technology Conference, Houston, Texas, May 6–9,
1985
.
55.
Ye
,
B.
,
Zhang
L.
,
Wang
H.
,
Zhang
X.
,
Lu
P.
, and
Ren
F.
.
2019
. “
Centrifuge Model Testing on Reliquefaction Characteristics of Sand
.”
Bulletin of Earthquake Engineering
17
, no. 
1
(January):
141
157
. https://doi.org/10.1007/s10518-018-0433-6
This content is only available via PDF.
You do not currently have access to this content.