Abstract

Small amounts of gas occur in almost every sediment in marine or coastal environments. In past studies, a negative influence of gas on the mechanical properties of soil was associated with geohazard occurrence and dike safety in tide affected areas. However, the impact of a homogeneous distribution of gas bubbles in soil on its mechanical properties has not yet been thoroughly understood. In order to further investigate and improve our understanding of the shear strength of gassy soils, an experimental setup and a sample preparation procedure to implement the axis-translation method were developed. To this end, a temperature-controlled triaxial apparatus was specially modified. The triaxial apparatus is supplemented by a circulation system, required for the preparation of gassy samples with a homogeneous gas bubble distribution. In the circulation system, a defined quantity of carbon dioxide gas is dissolved in water. During the test procedure, the carbonated water is circulated into a saturated sample via a pressure gradient between the sample top and bottom. A subsequent unloading, tailored to the previously dissolved gas quantity, leads to gas exsolution in the sample. As a result, a defined degree of saturation can be generated within the triaxial apparatus. This experimental procedure represents a nondestructive technique for the preparation of gassy soil samples that is not limited to specific soil types. Triaxial shear tests on these samples extend our knowledge on the stress–strain behavior of gassy soils and thus provide a basis for future research, e.g., in the field of constitutive modeling.

References

1.
Abid
,
K.
,
Spagnoli
G.
,
Teodoriu
C.
, and
Falcone
G.
.
2015
. “
Review of Pressure Coring Systems for Offshore Gas Hydrate Research
.”
Underwater Technology
33
, no. 
1
(July):
19
30
. https://doi.org/10.3723/ut.33.019
2.
Amaratunga
,
A.
and
Grozic
J. L. H.
.
2009
. “
On the Undrained Unloading Behaviour of Gassy Sands
.”
Canadian Geotechnical Journal
46
, no. 
11
(November):
1267
1276
. https://doi.org/10.1139/T09-056
3.
Archer
,
D.
2007
. “
Methane Hydrate Stability and Anthropogenic Climate Change
.”
Biogeosciences
4
, no. 
4
(July):
521
544
. https://doi.org/10.5194/bg-4-521-2007
4.
ASTM International.
2020
.
Standard Test Method for Consolidated Undrained Triaxial Compression Test for Cohesive Soils
. ASTM D4767-11. West Conshohocken, PA:
ASTM International
, approved April 1,
2020
. https://doi.org/10.1520/D4767-11R20
5.
Astuto
,
G.
,
Molina-Gómez
F.
,
Bilotta
E.
,
Viana da Fonseca
A.
, and
Flora
A.
.
2023
. “
Some Remarks on the Assessment of P-Wave Velocity in Laboratory Tests for Evaluating the Degree of Saturation
.”
Acta Geotechnica
18
, no. 
2
(February):
777
790
. https://doi.org/10.1007/s11440-022-01610-9
6.
Blouin
,
A.
,
Sultan
N.
,
Callot
J.-P.
, and
Imbert
P.
.
2019
. “
Sediment Damage Caused by Gas Exsolution: A Key Mechanism for Mud Volcano Formation
.”
Engineering Geology
263
(December): 105313. https://doi.org/10.1016/j.enggeo.2019.105313
7.
Böttner
,
C.
,
Haeckel
M.
,
Schmidt
M.
,
Berndt
C.
,
Vielstädte
L.
,
Kutsch
J. A.
,
Karstens
J.
, and
Weiß
T.
.
2020
. “
Greenhouse Gas Emissions from Marine Decommissioned Hydrocarbon Wells: Leakage Detection, Monitoring and Mitigation Strategies
.”
International Journal of Greenhouse Gas Control
100
(September): 103119. https://doi.org/10.1016/j.ijggc.2020.103119
8.
Boudreau
,
B. P.
,
Algar
C.
,
Johnson
B. D.
,
Croudace
I.
,
Reed
A.
,
Furukawa
Y.
,
Dorgan
K. M.
,
Jumars
P. A.
,
Grader
A. S.
, and
Gardiner
B. S.
.
2005
. “
Bubble Growth and Rise in Soft Sediments
.”
Geology
33
, no. 
6
(June):
517
520
. https://doi.org/10.1130/G21259.1
9.
Carroll
,
J. J.
,
Slupsky
J. D.
, and
Mather
A. E.
.
1991
. “
The Solubility of Carbon Dioxide in Water at Low Pressures
.”
Journal of Physical and Chemical Reference Data
20
, no. 
6
(November):
1201
1209
. https://doi.org/10.1063/1.555900
10.
Chillarige
,
A. V.
,
Morgenstern
N. R.
,
Robertson
P. K.
, and
Christian
H. A.
.
1997
. “
Seabed Instability due to Flow Liquefaction in the Fraser River Delta
.”
Canadian Geotechnical Journal
34
, no. 
4
(August):
520
533
. https://doi.org/10.1139/T97-019
11.
Clayton
,
C. R. I.
and
Khatrush
S. A.
.
1986
. “
A New Device for Measuring Local Axial Strains on Triaxial Specimens
.”
Géotechnique
36
, no. 
4
(December):
593
597
. https://doi.org/10.1680/geot.1986.36.4.593
12.
Deutsches Institut für Normung Normenausschuss Bauwesen (NABau).
Geotechnische Erkundung und Untersuchung – Laborversuche an Bodenproben–Teil 9: Konsolidierte Triaxiale Kompressionsversuche an wassergesättigten Böden [Geotechnical Investigation and Testing – Laboratory Testing of Soil - Part 9: Consolidated Triaxial Compression Tests on Water Saturated Soils]
. DIN EN ISO 17892-9. Berlin:
Beuth Verlag GmbH
,
2018
.
13.
Duan
,
Z.
,
Møller
N.
,
Greenberg
J.
, and
Weare
J. H.
.
1992
. “
The Prediction of Methane Solubility in Natural Waters to High Ionic Strength from 0 to 250°C and from 0 to 1600 Bar
.”
Geochimica et Cosmochimica Acta
56
, no. 
4
(April):
1451
1460
. https://doi.org/10.1016/0016-7037(92)90215-5
14.
Eseller-Bayat
,
E. E.
Seismic Response and Prevention of Liquefaction Failure of Sands Partially Saturated through Introduction of Gas Bubbles
.” PhD diss.,
Northeastern University
,
2009
.
15.
Finno
,
R. J.
,
Zhang
Y.
, and
Buscarnera
G.
.
2017
. “
Experimental Validation of Terzaghi’s Effective Stress Principle for Gassy Sands
.”
Journal of Geotechnical and Geoenvironmental Engineering
143
, no. 
12
(December): 04017092. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001797
16.
Fredlund
,
D. G.
and
Rahardjo
H.
.
1993
.
Soil Mechanics for Unsaturated Soils
.
New York
:
John Wiley & Sons, Inc
.
17.
Gardner
,
T. N.
The Acoustic Properties of Gassy Soil.
” PhD diss.,
University of Oxford
,
1988
.
18.
Grozic
,
J. L. H.
The Behavior of Loose Gassy Sand and Its Susceptibility of Liquefaction.
” PhD diss.,
University of Alberta
,
1999
.
19.
He
,
J.
,
Chu
J.
, and
Ivanov
V.
.
2013
. “
Mitigation of Liquefaction of Saturated Sand Using Biogas
.”
Géotechnique
63
, no. 
4
(March):
267
275
. https://doi.org/10.1680/geot.SIP13.P.004
20.
Hong
,
Y.
,
Wang
L. Z.
, and
Yang
B.
.
2018
. “
Undrained Shear Behaviour of Gassy Clay with Varying Initial Pore Water Pressures
.” In
Proceedings of China-Europe Conference on Geotechnical Engineering
, edited by
Wu
W.
and
Yu
H.-S.
,
524
528
.
Cham, Switzerland
:
Springer
.
21.
Hou
,
S.-X.
,
Maitland
G. C.
, and
Trusler
J. M. P.
.
2012
. “
Measurement and Modeling of the Phase Behavior of the (Carbon Dioxide + Water) Mixture at Temperatures from 298.15 K to 448.15K
.”
The Journal of Supercritical Fluids
73
(January):
87
96
. https://doi.org/10.1016/j.supflu.2012.11.011
22.
Jommi
,
C.
,
Muraro
S.
,
Trivellato
E.
, and
Zwanenburg
C.
.
2019
. “
Experimental Results on the Influence of Gas on the Mechanical Response of Peats
.”
Géotechnique
69
, no. 
9
(September):
753
766
. https://doi.org/10.1680/jgeot.17.P.148
23.
Kaminski
,
P.
,
Urlaub
M.
,
Grabe
J.
, and
Berndt
C.
.
2019
. “
Geomechanical Behaviour of Gassy Soils and Implications for Submarine Slope Stability: A Literature Analysis
.”
Geological Society of London Special Publications
500
(January):
277
288
. https://doi.org/10.1144/SP500-2019-149
24.
Kaminski
,
P.
,
Sager
T. F.
,
Grabe
J.
, and
Urlaub
M.
.
2021
. “
A New Methodology to Assess the Potential of Conjectural Trigger Mechanisms of Submarine Landslides Exemplified by Marine Gas Occurrence on the Balearic Promontory
.”
Engineering Geology
295
(December): 106446. https://doi.org/10.1016/j.enggeo.2021.106446
25.
Kar
,
S.
and
Phillips
R.
.
2015
. “
Submarine Slope Failure in Gassy Soils
.” In
Proceedings of the 34th International Conference on Ocean, Offshore and Arctic Engineering
, OMAE2015-41829. New York:
American Society of Mechanical Engineers
.
26.
Kumar
,
J.
and
Madhusudhan
B. N.
.
2012
. “
Dynamic Properties of Sand from Dry to Fully Saturated States
.”
Géotechnique
62
, no. 
1
(January):
45
54
. https://doi.org/10.1680/geot.10.P.042
27.
Lagioia
,
R.
,
Sanzeni
A.
, and
Colleselli
F.
.
2006
. “
Air, Water and Vacuum Pluviation of Sand Specimens for the Triaxial Apparatus
.”
Soils and Foundations
46
, no. 
1
(February):
61
67
. https://doi.org/10.3208/sandf.46.61
28.
Liu
,
T.
,
Yang
X.
, and
Zhang
Y.
.
2022
. “
A Review of Gassy Sediments: Mechanical Property, Disaster Simulation and In-Situ Test
.”
Frontiers in Earth Science
10
(June): 915735. https://doi.org/10.3389/feart.2022.915735
29.
Molina-Gómez
,
F.
,
Viana da Fonseca
A.
,
Ferreira
C.
, and
Caicedo
B.
.
2023
. “
Improvement of Cyclic Liquefaction Resistance Induced by Partial Saturation: An Interpretation Using Wave-Based Approaches
.”
Soil Dynamics and Earthquake Engineering
167
(April): 107819. https://doi.org/10.1016/j.soildyn.2023.107819
30.
Nageswaran
,
S.
Effect of Gas Bubbles on the Sea Bed Behaviour.
” PhD diss.,
St. Catherine’s College of Oxford
,
1983
.
31.
North
,
L. J.
,
Best
A. I.
,
Sothcott
J.
, and
MacGregor
L.
.
2013
. “
Laboratory Determination of the Full Electrical Resistivity Tensor of Heterogeneous Carbonate Rocks at Elevated Pressures
.”
Geophysical Prospecting
61
, no. 
2
(March):
458
470
. https://doi.org/10.1111/j.1365-2478.2012.01113.x
32.
Puzrin
,
A. M.
,
Tront
J.
,
Schmid
A.
, and
Hughes
J. B.
.
2011
. “
Engineered Use of Microbial Gas Production to Decrease Primary Consolidation Settlement in Clayey Soils
.”
Géotechnique
61
, no. 
9
(September):
785
794
. https://doi.org/10.1680/geot.9.T.023
33.
Rad
,
N. S.
,
Vianna
A. J. D.
, and
Berre
T.
.
1994
. “
Gas in Soils. II: Effect of Gas on Undrained Static and Cyclic Strength of Sand
.”
Journal of Geotechnical Engineering
120
, no. 
4
(April):
716
736
. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:4(716)
34.
Rebata-Landa
,
V.
and
Santamarina
J. C.
.
2012
. “
Mechanical Effects of Biogenic Nitrogen Gas Bubbles in Soils
.”
Journal of Geotechnical and Geoenvironmental Engineering
138
, no. 
2
(February):
128
137
. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000571
35.
Sills
,
G. C.
and
Gonzalez
R.
.
2001
. “
Consolidation of Naturally Gassy Soft Soil
.”
Géotechnique
51
, no. 
7
(September):
629
639
. https://doi.org/10.1680/geot.2001.51.7.629
36.
Sills
,
G. C.
and
Wheeler
S. J.
.
1992
. “
The Significance of Gas for Offshore Operations
.”
Continental Shelf Research
12
, no. 
10
(October):
1239
1250
. https://doi.org/10.1016/0278-4343(92)90083-V
37.
Sobkowicz
,
J. C.
The Mechanics of Gassy Sediments.
” PhD diss.,
University of Alberta
,
1982
.
38.
Sobkowicz
,
J. C.
and
Morgenstern
N. R.
.
1984
. “
The Undrained Equilibrium Behaviour of Gassy Sediments
.”
Canadian Geotechnical Journal
21
, no. 
3
(August):
439
448
. https://doi.org/10.1139/t84-048
39.
Sultan
,
N.
,
de Gennaro
V.
, and
Puech
A.
.
2012
. “
Mechanical Behaviour of Gas-Charged Marine Plastic Sediments
.”
Géotechnique
62
, no. 
9
(September):
751
766
. https://doi.org/10.1680/geot.12.OG.002
40.
Tamura
,
S.
,
Tokimatsu
K.
,
Abe
A.
, and
Sato
M.
.
2002
. “
Effects of Air Bubbles on B-Value and P-Wave Velocity of a Partly Saturated Sand
.”
Soils and Foundations
42
, no. 
1
(February):
121
129
. https://doi.org/10.3208/sandf.42.121
41.
Terzariol
,
M.
,
Sultan
N.
,
Apprioual
R.
, and
Garziglia
S.
.
2021
. “
Pore Habit of Gas in Gassy Sediments
.”
Journal of Geophysical Research: Solid Earth
126
, no. 
5
(May): e2020JB021511. https://doi.org/10.1029/2020JB021511
42.
Thomas
,
S. D.
The Consolidation Behaviour of Gassy Soils.
” PhD diss.,
University of Oxford
,
1987
.
43.
Valtz
,
A.
,
Chapoy
A.
,
Coquelet
C.
,
Paricaud
P.
, and
Richon
D.
.
2004
. “
Vapour–Liquid Equilibria in the Carbon Dioxide–Water System, Measurement and Modelling from 278.2 to 318.2K
.”
Fluid Phase Equilibria
226
(December):
333
344
. https://doi.org/10.1016/j.fluid.2004.10.013
44.
Vega-Posada
,
C. A.
,
Finno
R. J.
, and
Zapata-Medina
D. G.
.
2014
. “
Effect of Gas on the Mechanical Behavior of Medium-Dense Sands
.”
Journal of Geotechnical and Geoenvironmental Engineering
140
, no. 
11
(November): 040140. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001163
45.
Wang
,
Y.
,
Kong
L.
,
Wang
M.
,
Wang
Y.
, and
Cheng
P.
.
2021
. “
An Improved Specimen Preparation Method for Marine Shallow Gas-Bearing Sand Sediments and Its Validations
.”
Journal of Rock Mechanics and Geotechnical Engineering
13
, no. 
3
(June):
682
693
. https://doi.org/10.1016/j.jrmge.2020.11.010
46.
Wheeler
,
S. J.
The Stress-Strain Behaviour of Soils Containing Gas Bubbles.
” PhD diss.,
University of Oxford
,
1986
.
47.
Wheeler
,
S. J.
1988
a. “
A Conceptual Model for Soils Containing Large Gas Bubbles
.”
Géotechnique
38
, no. 
3
(September):
389
397
. https://doi.org/10.1680/geot.1988.38.3.389
48.
Wheeler
,
S. J.
1988
b. “
The Undrained Shear Strength of Soils Containing Large Gas Bubbles
.”
Géotechnique
38
, no. 
3
(September):
399
413
. https://doi.org/10.1680/geot.1988.38.3.399
49.
Yegian
,
M. K.
,
Eseller-Bayat
E. E.
,
Alshawabkeh
A.
, and
Ali
S.
.
2007
. “
Induced-Partial Saturation for Liquefaction Mitigation: Experimental Investigation
.”
Journal of Geotechnical and Geoenvironmental Engineering
133
, no. 
4
(April):
372
380
. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:4(372)
50.
Zeybek
,
A.
2022
. “
Experimental Insights into Induced Partial Saturation Methods Developed for Liquefaction Mitigation: Distribution of Gas Bubbles
.”
Journal of Engineering and Architecture Faculty of Eskisehir Osmangazi University
30
, no. 
3
(December):
309
317
. https://doi.org/10.31796/ogummf.1062953
This content is only available via PDF.
You do not currently have access to this content.