Abstract

The determination of the critical state locus (CSL) via triaxial testing has become a key input to the current state of practice to characterize the liquefaction susceptibility of tailings. However, an accurate estimate of void ratio is required to infer the CSL and allow correlation of the expected in situ state to element laboratory testing. This is an issue of particular importance for the loose moist tamped specimens generally used for CSL testing, which undergo significant volumetric collapse during saturation—a volume change that is difficult to measure using conventional test techniques. The torsional shear hollow cylinder (TSHC) device has been adopted in the past to investigate the effect of cross-anisotropy on the strength of soils, although studies on tailings in the TSHC are limited. The void ratio in previous TSHC testing programs appear to have been based on initial dimension measurements, with or without the adoption of internal instrumentation. However, as silty sands and sandy silts prepared in a loose state experience collapse during saturation, this may introduce an unquantifiable error in void ratio if the initial dimensions method is adopted and volumetric change due to saturation is not properly considered. A procedure is proposed in this paper that provides simple steps and calculations to enable the determination of void ratio in the TSHC apparatus in specimens that undergo significant volumetric collapse on saturation. This method is potentially more accurate than methods based on initial dimensions measurements to infer void ratio and does not require costly internal instrumentation.

References

1.
Ampadu
,
S. I. K.
Undrained Behaviour of Kaolin in Torsional Simple Shear
.” PhD diss.,
University of Tokyo
,
1991
.
2.
Ayala
,
J.
,
Fourie
A.
, and
Reid
D.
.
2020
. “
Cone Penetration Testing on Silty Tailings Using a New Small Calibration Chamber
.”
Géotechnique Letters
10
, no. 
4
(December):
492
497
. https://doi.org/10.1680/jgele.20.00037
3.
Ayala
,
J.
,
Fourie
A.
, and
Reid
D.
.
2022
. “
Improved Cone Penetration Test Predictions of the State Parameter of Loose Mine Tailings
.”
Canadian Geotechnical Journal
59
, no. 
11
(November):
1969
1980
. https://doi.org/10.1139/cgj-2021-0460
4.
Bahadori
,
H.
,
Ghalandarzadeh
A.
, and
Towhata
I.
.
2008
. “
Effect of Non-plastic Silt on the Anisotropic Behaviour of Sand
.”
Soils and Foundations
48
, no. 
4
:
531
545
. https://doi.org/10.3208/sandf.48.531
5.
Bishop
,
A. W.
1971
. “
Shear Strength Parameters for Undisturbed and Remolded Soil Specimens
.” In
Stress-Strain Behaviour of Soils; Proceedings of the Roscoe Memorial Symposium
,
3
58
.
Edinburgh, Scotland
:
G. T. Foulis & Co
.
6.
Brosse
,
A. M.
,
Jardine
R. J.
, and
Nishimura
S.
.
2017
. “
The Undrained Shear Strength Anisotropy of Four Jurassic to Eocene Stiff Clays
.”
Géotechnique
67
, no. 
8
(August):
653
671
. https://doi.org/10.1680/jgeot.15.P.227
7.
Cai
,
Y.
,
Song
X.
,
Sun
Q.
,
Dong
Q.
, and
Wang
J.
.
2018
. “
Drained Responses of Granular Soil Sheared under Inclined Principal Stress Axes: Impact of Sample Preparation
.”
Engineering Geology
241
(July):
33
40
. https://doi.org/10.1016/j.enggeo.2018.05.002
8.
Castro
,
G.
Liquefaction of Sand
.” PhD diss.,
Harvard University
,
1969
.
9.
Chu
,
J.
,
Leroueil
S.
, and
Leong
W. K.
.
2003
. “
Unstable Behaviour of Sand and Its Implication for Slope Instability
.”
Canadian Geotechnical Journal
40
, no. 
5
(October):
873
885
. https://doi.org/10.1139/t03-039
10.
Chu
,
J.
and
Wanatowski
D.
.
2008
. “
Instability Conditions of Loose Sand in Plane Strain
.”
Journal of Geotechnical and Geoenvironmental Engineering
134
, no. 
1
(January):
136
142
. https://doi.org/10.1061/(asce)1090-0241(2008)134:1(136)
11.
Desrues
,
J.
,
Chambon
R.
,
Mokni
M.
, and
Mazerolle
F.
.
1996
. “
Void Ratio Evolution inside Shear Bands in Triaxial Sand Specimens Studied by Computed Tomography
.”
Géotechnique
46
, no. 
3
(September):
529
546
. https://doi.org/10.1680/geot.1996.46.3.529
12.
Dong
,
Q.
,
Xu
C.
,
Cai
Y.
,
Juang
H.
,
Wang
J.
,
Yang
Z.
, and
Gu
C.
.
2016
. “
Drained Instability in Loose Granular Material
.”
International Journal of Geomechanics
16
, no. 
2
(April): 04015043. https://doi.org/10.1061/(asce)gm.1943-5622.0000524
13.
Evans
,
M. D.
1992
. “
Density Changes during Undrained Loading—Membrane Compliance
.”
Journal of Geotechnical Engineering
118
, no. 
12
(December):
1924
1936
. https://doi.org/10.1061/(ASCE)0733-9410(1992)118:12(1924)
14.
Frydman
,
S.
,
Zeitlen
J. G.
, and
Alpan
I.
.
1973
. “
The Membrane Effect in Triaxial Testing of Granular Soils
.”
Journal of Testing and Evaluation
1
, no. 
1
(January):
37
41
. https://doi.org/10.1520/JTE11599J
15.
Gräbe
,
P. J.
and
Clayton
C. R. I.
.
2014
. “
Effects of Principal Stress Rotation on Resilient Behavior in Rail Track Foundations
.”
Journal of Geotechnical and Geoenvironmental Engineering
140
, no. 
2
(February): 04013010. https://doi.org/10.1061/(ASCE)gt.1943-5606.0001023
16.
Jefferies
,
M. G.
and
Been
K.
.
2016
.
Soil Liquefaction: Critical State Approach
, 1st ed.
Boca Raton, FL
:
CRC Press.
17.
Jefferies
,
M.
,
Morgenstern
N. R.
,
Van Zyl
D.
, and
Wates
J.
.
2019
.
Report on the NTSF Embankment Failure
.
Ashurst, Australia
:
Cadia Valley Operations
.
18.
Krage
,
C. P.
,
Price
A. B.
,
Lukas
W. G.
,
DeJong
J. T.
,
DeGroot
D. J.
, and
Boulanger
R. W.
.
2020
. “
Slurry Deposition Method of Low-Plasticity Intermediate Soils for Laboratory Element Testing
.”
Geotechnical Testing Journal
43
, no. 
5
(September/October):
1269
1285
. https://doi.org/10.1520/GTJ20180117
19.
Kuerbis
,
R.
and
Vaid
Y. P.
.
1988
. “
Sand Sample Preparation—The Slurry Deposition Method
.”
Soils and Foundations
28
, no. 
4
(December):
107
118
. https://doi.org/10.3208/sandf1972.28.4_107
20.
Ladd
,
R.
1978
. “
Preparing Test Specimens Using Undercompaction
.”
Geotechnical Testing Journal
1
, no. 
1
(March):
16
23
. https://doi.org/10.1520/GTJ10364J
21.
Li
,
X. S.
and
Wang
Y.
.
1998
. “
Linear Representation of Steady-State Line for Sand
.”
Journal of Geotechnical and Geoenvironmental Engineering
124
, no. 
12
(December):
1215
1217
. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:12(1215)
22.
Martin
,
G. R.
,
Seed
H. B.
, and
Finn
W. D. L.
.
1978
. “
Effects of System Compliance on Liquefaction Tests
.”
Journal of the Geotechnical Engineering Division
104
, no. 
4
(April):
463
479
. https://doi.org/10.1061/AJGEB6.0000614
23.
Menkiti
,
O. C.
Behaviour of Clay and Clayey-Sand, with Particular Reference to Principal Stress Rotation
.” PhD diss.,
Imperial College London
,
1995
.
24.
Morgenstern
,
N. R.
,
Vick
S. G.
,
Viotti
C. B.
, and
Watts
B. D.
.
2016
.
Fundão Tailings Dam Review Panel
.
Report on the Immediate Causes of the Failure of the Fundão Dam
.
25.
Nishimura
,
S.
,
Minh
N. A.
, and
Jardine
R. J.
.
2007
. “
Shear Strength Anisotropy of Natural London Clay
.”
Géotechnique
57
, no. 
1
(February):
49
62
. https://doi.org/10.1680/geot.2007.57.1.49
26.
Nocilla
,
A.
,
Coop
M. R.
, and
Colleselli
F.
.
2006
. “
The Mechanics of an Italian Silt: An Example of ‘Transitional’ Behavior
.”
Géotechnique
56
, no. 
4
(May):
261
271
. https://doi.org/10.1680/geot.2006.56.4.261
27.
Porovic
,
E.
Investigations of Soil Behavior Using a Resonant-Column Torsional-Shear Hollow-Cylinder Apparatus
.” PhD diss.,
Imperial College London
,
1995
.
28.
Pradhan
,
T. B. S.
,
Tatsuoka
F.
, and
Horii
N.
.
1988
. “
Simple Shear Testing on Sand in a Torsional Shear Apparatus
.”
Soils and Foundations
28
, no. 
2
(June):
95
112
. https://doi.org/10.3208/sandf1972.28.2_95
29.
Reid
,
D.
and
Fanni
R.
.
2022
. “
A Comparison of Intact and Reconstituted Samples of a Silt Tailings
.”
Géotechnique
72
, no. 
2
(February):
176
188
. https://doi.org/10.1680/jgeot.20.p.020
30.
Reid
,
D.
,
Fourie
A.
,
Ayala
J. L.
,
Dickinson
S.
,
Ochoa-Cornejo
F.
,
Fanni
R.
, and
Garfias
J.
, et al.
2021
. “
Results of a Critical State Line Testing Round Robin Programme
.”
Géotechnique
71
, no. 
7
(July):
616
630
. https://doi.org/10.1680/jgeot.19.P.373
31.
Reid
,
D.
,
Fanni
R.
, and
Fourie
A.
.
2021
. “
Discussion of ‘Forewarning of Static Liquefaction Landslides’ by Abouzar Sadrekarimi
.”
Journal of Geotechnical and Geoenvironmental Engineering
147
, no. 
10
(October): 07021020. https://doi.org/10.1061/(asce)gt.1943-5606.0002616
32.
Reid
,
D.
,
Fanni
R.
, and
Fourie
A.
.
2022
a. “
Assessing the Undrained Strength Cross-Anisotropy of Three Tailings Types
.”
Géotechnique Letters
12
, no. 
1
(March):
1
7
. https://doi.org/10.1680/jgele.21.00094
33.
Reid
,
D.
,
Fanni
R.
, and
Fourie
A.
.
2022
b. “
Effect of Tamping Conditions on the Shear Strength of Tailings
.”
International Journal of Geomechanics
22
, no. 
3
(March): 04021288. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002247
34.
Reid
,
D.
,
Fanni
R.
,
Koh
K.
, and
Orea
I.
.
2018
. “
Characterisation of a Subaqueously Deposited Silt Iron Ore Tailings
.”
Géotechnique Letters
8
, no. 
4
(December):
278
283
. https://doi.org/10.1680/jgele.18.00105
35.
Robertson
,
P. K.
,
de Melo
L.
,
Williams
D. J.
, and
Wilson
G. W.
.
2019
.
Report of the Expert Panel on the Technical Causes of the Failure of Feijão Dam I.
36.
Shuttle
,
D.
and
Jefferies
M.
.
2016
. “
Determining Silt State from CPTu
.”
Geotechnical Research
3
, no. 
3
(September):
90
118
. https://doi.org/10.1680/jgere.16.00008
37.
Sladen
,
J. A.
and
Handford
G.
.
1987
. “
A Potential Systematic Error in Laboratory Testing of Very Loose Sands
.”
Canadian Geotechnical Journal
24
, no. 
3
(August):
462
466
. https://doi.org/10.1139/t87-058
38.
Seed
,
H. B.
and
Lee
K. L.
.
1966
. “
Liquefaction of Saturated Sands during Cyclic Loading
.”
Journal of the Soil Mechanics and Foundations Division
92
, no. 
6
(November):
105
134
. https://doi.org/10.1061/JSFEAQ.0000913
39.
Tastan
,
E.
and
Carraro
J. A.
.
2013
. “
A New Slurry-Based Method of Preparation of Hollow Cylinder Specimens of Clean and Silty Sands
.”
Geotechnical Testing Journal
36
, no. 
6
(September):
811
822
. https://doi.org/10.1520/GTJ20130056
40.
Tatsuoka
,
F.
,
Sonoda
S.
,
Hara
K.
,
Fukushima
S.
, and
Pradhan
T. B. S.
.
1986
. “
Failure and Deformation of Sand in Torsional Shear
.”
Soils and Foundations
26
, no. 
4
(December):
79
97
. https://doi.org/10.3208/sandf1972.26.4_79
41.
Tokimatsu
,
K.
and
Nakamura
K.
.
1986
. “
A Liquefaction Test without Membrane Penetration Effects
.”
Soils and Foundations
26
, no. 
4
(December):
127
138
. https://doi.org/10.3208/sandf1972.26.4_127
42.
Tori
,
S.
,
Tatsuoka
F.
,
Miura
S.
,
Yoshimi
Y.
,
Yasuda
S.
, and
Makihara
Y.
.
1986
. “
Cyclic Undrained Triaxial Strength of Sand by a Cooperative Test Program
.”
Soils and Foundations
26
, no. 
3
(September):
117
128
. https://doi.org/10.3208/sandf1972.26.3_117
43.
Triantafyllos
,
P. K.
,
Georgiannou
V. N.
,
Dafalias
Y. F.
, and
Georgopoulos
I.-O.
.
2020
. “
New Findings on the Evolution of the Instability Surface of Loose Sand
.”
Acta Geotechnica
15
, no. 
1
(January):
197
221
. https://doi.org/10.1007/s11440-019-00887-7
44.
Uthayakumar
,
M.
and
Vaid
Y. P.
.
1998
. “
Static Liquefaction of Sands under Multiaxial Loading
.”
Canadian Geotechnical Journal
35
, no. 
2
(April):
273
283
. https://doi.org/10.1139/cgj-35-2-273
45.
Vaid
,
Y. P.
,
Sayao
A.
,
Hou
E.
, and
Negussey
D.
.
1990
. “
Generalized Stress-Path-Dependent Soil Behavior with a New Hollow Cylinder Torsional Apparatus
.”
Canadian Geotechnical Journal
27
, no. 
5
(October):
601
616
. https://doi.org/10.1139/t90-075
46.
Viana da Fonseca
,
A.
,
Cordeiro
D.
, and
Molina-Gómez
F.
.
2021
. “
Recommended Procedures to Assess Critical State Locus from Triaxial Tests in Cohesionless Remolded Samples
.”
Geotechnics
1
, no. 
1
(September):
95
127
. https://doi.org/10.3390/geotechnics1010006
47.
Wanatowski
,
D.
Strain Softening and Instability of Sand under Plane-Strain Conditions
.” PhD diss.,
Nanyang Technological University
,
2005
.
48.
Wanatowski
,
D.
and
Chu
J.
.
2012
. “
Factors Affecting Pre-failure Instability of Sand under Plane-Strain Conditions
.”
Géotechnique
62
, no. 
2
(February):
121
135
. https://doi.org/10.1680/geot.9.P.111
49.
Xiao
,
Y.
,
Coop
M. R.
,
Liu
H.
,
Liu
H.
, and
Jiang
J.
.
2016
. “
Transitional Behaviors in Well-Graded Coarse Granular Soils
.”
Journal of Geotechnical and Geoenvironmental Engineering
142
, no. 
12
(December): 06016018. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001551
50.
Xu
,
L.
and
Coop
M. R.
.
2017
. “
The Mechanics of a Saturated Silty Loess with a Transitional Mode
.”
Géotechnique
67
, no. 
7
(July):
581
596
. https://doi.org/10.1680/jgeot.16.P.128
51.
Yoshimine
,
M.
,
Ishihara
K.
, and
Vargas
W.
.
1998
. “
Effects of Principal Stress Direction and Intermediate Principal Stress on Undrained Shear Behavior of Sand
.”
Soils and Foundations
38
, no. 
3
(September):
179
188
. https://doi.org/10.3208/sandf.38.3_179
52.
Zdravković
,
L.
and
Jardine
R. J.
.
2001
. “
The Effect on Anisotropy of Rotating the Principal Stress Axes during Consolidation
.”
Géotechnique
51
, no. 
1
(February):
69
83
. https://doi.org/10.1680/geot.2001.51.1.69
This content is only available via PDF.
You do not currently have access to this content.