Abstract

Soils typically have anisotropic mechanical and hydraulic properties due to the micro-scale interactions between particles that are influenced by particle morphology and depositional processes that can lead to particular particle arrangements (i.e., fabric anisotropy) and by imposed loading conditions and history (i.e., stress anisotropy). Experimental assessment of the anisotropy of soil specimens is a challenging feat, typically accomplished using specialized geotechnical testing and imaging equipment. The anisotropy of soil specimens can also be assessed based on measured responses, such as the velocity of propagating shear waves. This paper presents the development of a system that enables the measurement of shear wave velocity (VS) along different orientations and polarization planes using seven pairs of piezoelectric bender elements (BEs) to obtain angular distributions of VS. Specimens of glass beads and angular natural sands were tested in isotropic and one-dimensional (1D) compression to demonstrate the results obtained with the multi-BE system. The experimental results indicate that the effects of fabric and stress anisotropy can be identified by the angular distributions of VS, as well as measurements obtained along different polarization planes (i.e., VS,HH, VS,HV, and VS,VH). The level of anisotropy in soil specimens can be quantified either in terms of ratios of shear wave velocities or of parameters used to fit the angular VS distribution. The results also show that the parameters describing the relationship between VS and mean effective stress depend on the orientation of the propagating wave. The proposed system may enable the nondestructive assessment of soil specimen anisotropy using conventional laboratory equipment, which would complement other sophisticated experimental methods such as X-ray computed tomography and particle-based numerical simulations.

References

1.
Ahmed
,
S. S.
,
Martinez
A.
, and
DeJong
J. T.
. Forthcoming. “
Effect of Gradation on the Strength and Stress-Dilation Behavior of Coarse-Grained Soils in Drained and Undrained Triaxial Compression
.”
Journal of Geotechnical and Geoenvironmental Engineering
. https://doi.org/10.1061/JGGEFK/GTENG-10972
2.
Altuhafi
,
F. N.
,
Coop
M. R.
, and
Georgiannou
V. N.
.
2016
. “
Effect of Particle Shape on the Mechanical Behavior of Natural Sands
.”
Journal of Geotechnical and Geoenvironmental Engineering
142
, no. 
12
(December): 04016071. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001569
3.
Alvarado
,
G.
and
Coop
M. R.
.
2012
. “
On the Performance of Bender Elements in Triaxial Tests
.”
Géotechnique
62
, no. 
1
(January):
1
17
. https://doi.org/10.1680/geot.7.00086
4.
Arroyo
,
M.
,
Muir Wood
D.
, and
Greening
P. D.
.
2003
. “
Source Near-Field Effects and Pulse Tests in Soil Samples
.”
Géotechnique
53
, no. 
3
(April):
337
345
. https://doi.org/10.1680/geot.2003.53.3.337
5.
Arroyo
,
M.
,
Muir Wood
D.
,
Greening
P. D.
,
Medina
L.
, and
Rio
J.
.
2006
. “
Effects of Sample Size on Bender-Based Axial G0 Measurements
.”
Géotechnique
56
, no. 
1
(February):
39
52
. https://doi.org/10.1680/geot.2006.56.1.39
6.
Arulnathan
,
R.
,
Boulanger
R. W.
, and
Riemer
M. F.
.
1998
. “
Analysis of Bender Element Tests
.”
Geotechnical Testing Journal
21
, no. 
2
(June):
120
131
. https://doi.org/10.1520/GTJ10750J
7.
Barreto
,
D.
,
O’Sullivan
C.
, and
Zdravkovic
L.
.
2009
. “
Quantifying the Evolution of Soil Fabric under Different Stress Paths
.”
AIP Conference Proceedings
1145
, no. 
1
:
181
184
. https://doi.org/10.1063/1.3179881
8.
Basson
,
M. S.
and
Martinez
A.
.
2020
. “
A DEM Study of the Evolution of Fabric of Coarse-Grained Materials during Oedometric and Isotropic Compression
.” In
Geo-Congress 2020: Modeling, Geomaterials, and Site Characterization
,
473
481
.
Reston, VA
:
American Society of Civil Engineers
. https://doi.org/10.1061/9780784482803.051
9.
Basson
,
M. S.
,
Miller
J.
, and
Martinez
A.
.
2021
. “
Experimental Estimation of Fabric in Granular Materials Using Shear Wave Velocity Measurements
.” In
Soil Dynamics: Lecture Notes in Civil Engineering
119
, edited by
Sitharam
T. G.
,
Dinesh
S. V.
, and
Jakka
Ravi
,
311
323
.
Singapore
:
Springer
. https://doi.org/10.1007/978-981-33-4001-5_28
10.
Blewett
,
J.
,
Blewett
I. J.
, and
Woodward
P. K.
.
1999
. “
Measurement of Shear-Wave Velocity Using Phase-Sensitive Detection Techniques
.”
Canadian Geotechnical Journal
36
, no. 
5
(November):
934
939
. https://doi.org/10.1139/t99-051
11.
Brignoli
,
E. G. M.
,
Gotti
M.
, and
Stokoe
K. H.
.
1996
. “
Measurement of Shear Waves in Laboratory Specimens by Means of Piezoelectric Transducers
.”
Geotechnical Testing Journal
19
, no. 
4
(December):
384
397
. https://doi.org/10.1520/GTJ10716J
12.
Cascante
,
G.
and
Santamarina
J. C.
.
1996
. “
Interparticle Contact Behavior and Wave Propagation
.”
Journal of Geotechnical Engineering
122
, no. 
10
(October):
831
839
. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:10(831)
13.
Cha
,
M.
,
Santamarina
J. C.
,
Kim
H.-S.
, and
Cho
G.-C.
.
2014
. “
Small-Strain Stiffness, Shear-Wave Velocity, and Soil Compressibility
.”
Journal of Geotechnical and Geoenvironmental Engineering
140
, no. 
10
(October): 06014011. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001157
14.
Chamorro-Zurita
,
C.
and
Ovando-Shelley
E.
.
2020
. “
Anisotropy of Lacustrine Soils in a Large Oedometer Equipped with Bender Elements
.”
Soils and Foundations
60
, no. 
2
(April):
372
383
. https://doi.org/10.1016/j.sandf.2020.02.009
15.
Cho
,
G.-C.
,
Dodds
J.
, and
Santamarina
J. C.
.
2006
. “
Particle Shape Effects on Packing Density, Stiffness, and Strength: Natural and Crushed Sands
.”
Journal of Geotechnical and Geoenvironmental Engineering
132
, no. 
5
(May):
591
602
. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:5(591)
16.
Cnudde
,
V.
and
Boone
M. N.
.
2013
. “
High-Resolution X-ray Computed Tomography in Geosciences: A Review of the Current Technology and Applications
.”
Earth-Science Reviews
123
(August):
1
17
.
17.
Dutta
,
T. T.
,
Otsubo
M.
,
Kuwano
R.
, and
Sato
T.
.
2020
. “
Estimating Multidirectional Stiffness of Soils Using Planar Piezoelectric Transducers in a Large Triaxial Apparatus
.”
Soils and Foundations
60
, no. 
5
(October):
1269
1286
. https://doi.org/10.1016/j.sandf.2020.08.002
18.
Farber
,
L.
,
Tardos
G.
, and
Michaels
J. N.
.
2003
. “
Use of X-ray Tomography to Study the Porosity and Morphology of Granules
.”
Powder Technology
132
, no. 
1
(May):
57
63
. https://doi.org/10.1016/S0032-5910(03)00043-3
19.
Fioravante
,
V.
2000
. “
Anisotropy of Small Strain Stiffness of Ticino and Kenya Sands from Seismic Wave Propagation Measured in Triaxial Testing
.”
Soils and Foundations
40
, no. 
4
(August):
129
142
. https://doi.org/10.3208/sandf.40.4_129
20.
Fioravante
,
V.
and
Capoferri
R.
.
2001
. “
On the Use of Multi-directional Piezoelectric Transducers in Triaxial Testing
.”
Geotechnical Testing Journal
24
, no. 
3
(September):
243
255
. https://doi.org/10.1520/GTJ11344J
21.
Goudarzy
,
M.
,
König
D.
,
Santamarina
J. C.
, and
Schanz
T.
.
2018
. “
The Influence of the Anisotropic Stress State on the Intermediate Strain Properties of Granular Material
.”
Géotechnique
68
, no. 
3
(March):
221
232
. https://doi.org/10.1680/jgeot.16.P.180
22.
Gomez
,
M. G.
,
Graddy
C. M. R.
,
DeJong
J. T.
,
Nelson
D. C.
, and
Tsesarsky
M.
.
2018
. “
Stimulation of Native Microorganisms for Biocementation in Samples Recovered from Field-Scale Treatment Depths
.”
Journal of Geotechnical and Geoenvironmental Engineering
144
, no. 
1
(January): 04017098. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001804
23.
Gu
,
Q.
,
Sarkar
D.
,
Goudarzy
M.
, and
Wichtmann
T.
. n.d. “
Combined Effect of Grain Shape and Grading on the Small-Strain Stiffness of Granular Soils at Different Densities and Stress States
.” Paper presented at the Third Vortragsbeiträge Bodenmechanik-Tagung, Würzburg, Germany, April
2021
.
24.
Hardin
,
B. O.
and
Richart
F. E.
 Jr.
1963
. “
Elastic Wave Velocities in Granular Soils
.”
Journal of the Soil Mechanics and Foundations Division
89
, no. 
1
(February):
33
65
. https://doi.org/10.1061/JSFEAQ.0000493
25.
Ibrahim
,
A. A.
and
Kagawa
T.
.
1991
. “
Microscopic Measurement of Sand Fabric from Cyclic Tests Causing Liquefaction
.”
Geotechnical Testing Journal
14
, no. 
4
(December):
371
382
. https://doi.org/10.1520/GTJ10205J
26.
Jamiolkowski
,
M.
,
Lancellotta
R.
, and
Lo Presti
D. C. F.
.
1995
. “
Remarks on the Stiffness at Small Strain of Six Italian Clays
.” In
Proceedings of the International Symposium on Pre-failure Deformation Characteristics of Geomaterials
,
817
836
.
Rotterdam, the Netherlands
:
A. A. Balkema
.
27.
Jovičić
,
V.
,
Coop
M. R.
, and
Simić
M.
.
1996
. “
Objective Criteria for Determining Gmax from Bender Element Tests
.”
Géotechnique
46
, no. 
2
(June):
357
362
. https://doi.org/10.1680/geot.1996.46.2.357
28.
Kaviani-Hamedani
,
F.
,
Fakharian
K.
, and
Lashkari
A.
.
2021
. “
Bidirectional Shear Wave Velocity Measurements to Track Fabric Anisotropy Evolution of a Crushed Silica Sand during Shearing
.”
Journal of Geotechnical and Geoenvironmental Engineering
147
, no. 
10
(October): 04021104. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002622
29.
Kodicherla
,
S. P. K.
,
Gong
G.
,
Fan
L.
,
Moy
C. K. S.
, and
He
J.
.
2018
. “
Effects of Preparation Methods on Inherent Fabric Anisotropy and Packing Density of Reconstituted Sand
.”
Cogent Engineering
5
, no. 
1
(October): 1533363. https://doi.org/10.1080/23311916.2018.1533363
30.
Krumbein
,
W. C.
and
Sloss
L. L.
.
1963
.
Stratigraphy and Sedimentation
, 2nd ed.
San Francisco, CA
:
W. H. Freeman and Company
.
31.
Ku
,
T.
and
Mayne
P. W.
.
2013
. “
Evaluating the In Situ Lateral Stress Coefficient (K0) of Soils via Paired Shear Wave Velocity Modes
.”
Journal of Geotechnical and Geoenvironmental Engineering
139
, no. 
5
(May):
775
787
. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000756
32.
Kuwano
,
R.
,
Connolly
T. M.
, and
Kuwano
J.
.
1999
. “
Shear Stiffness Anisotropy Measured by Multi-directional Bender Element Transducers
.” In
International Symposium on Pre-failure Deformation Characteristics of Geomaterials-IS Torino
99
,
205
212
.
Rotterdam, the Netherlands
:
A. A. Balkema.
33.
Kuwano
,
R.
and
Jardine
R. J.
.
2002
. “
On the Applicability of Cross-Anisotropic Elasticity to Granular Materials at Very Small Strains
.”
Géotechnique
52
, no. 
10
(December):
727
749
. https://doi.org/10.1680/geot.2002.52.10.727
34.
Lee
,
J.-S.
and
Santamarina
J. C.
.
2005
. “
Bender Elements: Performance and Signal Interpretation
.”
Journal of Geotechnical and Geoenvironmental Engineering
131
, no. 
9
(September):
1063
1070
. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:9(1063)
35.
Leong
,
E. C.
,
Yeo
S. H.
, and
Rahardjo
H.
.
2005
. “
Measuring Shear Wave Velocity Using Bender Elements
.”
Geotechnical Testing Journal
28
, no. 
5
(July):
488
498
. https://doi.org/10.1520/GTJ12196
36.
Li
,
B.
and
Zeng
X.
.
2014
. “
Effects of Fabric Anisotropy on Elastic Shear Modulus of Granular Soils
.”
Earthquake Engineering and Engineering Vibration
13
, no. 
2
(August):
269
278
. https://doi.org/10.1007/s11803-014-0229-x
37.
Liu
,
X.
and
Yang
J.
.
2018
. “
Shear Wave Velocity in Sand: Effect of Grain Shape
.”
Géotechnique
68
, no. 
8
(August):
742
748
. https://doi.org/10.1680/jgeot.17.T.011
38.
Martinez
,
A.
,
Huang
L.
, and
Gomez
M. G.
.
2019
. “
Thermal Conductivity of MICP-Treated Sands at Varying Degrees of Saturation
.”
Géotechnique Letters
9
, no. 
1
(March):
15
21
. https://doi.org/10.1680/jgele.18.00126
39.
Mital
,
U.
,
Kawamoto
R.
, and
Andrade
J. E.
.
2019
. “
Effect of Fabric on Shear Wave Velocity in Granular Soils
.”
Acta Geotechnica
15
, no. 
5
(May):
1189
1203
. https://doi.org/10.1007/s11440-019-00766-1
40.
Mitaritonna
,
G.
,
Amorosi
A.
, and
Cotecchia
F.
.
2014
. “
Experimental Investigation of the Evolution of Elastic Stiffness Anisotropy in a Clayey Soil
.”
Géotechnique
64
, no. 
6
(May):
463
475
. https://doi.org/10.1680/geot.13.P.191
41.
Mitchell
,
J. K.
and
Soga
K.
.
2005
.
Fundamentals of Soil Behavior
, 3rd ed.
Hoboken, NJ
:
John Wiley & Sons
.
42.
Montoya
,
B. M.
,
Gerhard
R.
,
DeJong
J. T.
,
Wilson
D. W.
,
Weil
M. H.
,
Martinez
B. C.
, and
Pederson
L.
.
2012
. “
Fabrication, Operation, and Health Monitoring of Bender Elements for Aggressive Environments
.”
Geotechnical Testing Journal
35
, no. 
5
(August):
728
742
. https://doi.org/10.1520/GTJ103300
43.
Oda
,
M.
1972
a. “
Initial Fabric and Their Relations to Mechanical Properties of Granular Materials
.”
Soils and Foundations
12
, no. 
1
(March):
17
36
. https://doi.org/10.3208/sandf1960.12.17
44.
Oda
,
M.
1972
b. “
The Mechanism of Fabric Changes during Compressional Deformation of Sands, Soils and Foundations
.”
Soils and Foundations
12
, no. 
2
(June):
1
18
. https://doi.org/10.3208/sandf1972.12.1
45.
Oda
,
M.
,
Konishi
J.
, and
Nemat-Nasser
S.
.
1982
. “
Experimental Micromechanical Evaluation of Strength of Granular Materials: Effects of Particle Rolling
.”
Mechanics of Materials
1
, no. 
4
(December):
269
283
. https://doi.org/10.1016/0167-6636(82)90027-8
46.
Oda
,
M.
,
Nemat-Nasser
S.
, and
Konishi
J.
.
1985
. “
Stress-Induced Anisotropy in Granular Masses
.”
Soils and Foundations
25
, no. 
3
:
85
97
. https://doi.org/10.3208/sandf1972.25.3_85
47.
O’Donovan
,
J.
,
O’Sullivan
C.
,
Marketos
G.
, and
Muir Wood
D.
.
2015
. “
Analysis of Bender Element Test Interpretation Using the Discrete Element Method
.”
Granular Matter
17
, no. 
2
(April):
197
216
. https://doi.org/10.1007/s10035-015-0552-6
48.
Ogino
,
T.
,
Kawaguchi
T.
,
Yamashita
S.
, and
Kawajiri
S.
.
2015
. “
Measurement Deviations for Shear Wave Velocity of Bender Element Test Using Time Domain, Cross-Correlation, and Frequency Domain Approaches
.”
Soils and Foundations
55
, no. 
2
(April):
329
342
. https://doi.org/10.1016/j.sandf.2015.02.009
49.
Otsubo
,
M.
,
Liu
J.
,
Kawaguchi
Y.
,
Dutta
T. T.
, and
Kuwano
R.
.
2020
. “
Anisotropy of Elastic Wave Velocity Influenced by Particle Shape and Fabric Anisotropy under K0 Condition
.”
Computers and Geotechnics
128
(December): 103775. https://doi.org/10.1016/j.compgeo.2020.103775
50.
Payan
,
M.
,
Khoshghalb
A.
,
Senetakis
K.
, and
Khalili
N.
.
2016
. “
Small-Strain Stiffness of Sand Subjected to Stress Anisotropy
.”
Soil Dynamics and Earthquake Engineering
88
(September):
143
151
. https://doi.org/10.1016/j.soildyn.2016.06.004
51.
Pennington
,
D. S.
,
Nash
D. F. T.
, and
Lings
M. L.
.
1997
. “
Anisotropy of G0 shear Stiffness in Gault Clay
.”
Géotechnique
47
, no. 
3
(June):
391
398
. https://doi.org/10.1680/geot.1997.47.3.391
52.
Pennington
,
D. S.
,
Nash
D. F. T.
, and
Lings
M.
.
2001
. “
Horizontally Mounted Bender Elements for Measuring Anisotropic Shear Moduli in Triaxial Clay Specimens
.”
Geotechnical Testing Journal
24
, no. 
2
(June):
133
144
. https://doi.org/10.1520/GTJ11333J
53.
Reardon
,
R.
,
Humire
F.
,
Ahmed
S. S.
,
Ziotopoulou
K.
,
Martinez
A.
, and
Dejong
J. T.
.
2022
. “
Effect of Gradation on the Strength and Stress-Dilatancy of Coarse-Grained Soils: A Comparison of Monotonic Direct Simple Shear and Triaxial Tests
.” In
GeoCongress 2022
,
226
236
.
Reston, VA
:
American Society of American Engineers
. https://doi.org/10.1061/9780784484043.022
54.
Roesler
,
S. K.
1979
. “
Anisotropic Shear Modulus Due to Stress Anisotropy
.”
International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts
16
, no. 
6
(December): 130. https://doi.org/10.1016/0148-9062(79)90065-2
55.
Rothenburg
,
L.
and
Bathurst
R. J.
.
1989
. “
Analytical Study of Induced Anisotropy in Idealized Granular Materials
.”
Géotechnique
39
, no. 
4
(December):
601
614
. https://doi.org/10.1680/geot.1989.39.4.601
56.
Sanchez-Salerino
,
I.
,
Roesset
J. M.
, and
Stokoe
K. H.
 II
.
1986
.
Analytical Studies of Wave Propagation and Attenuation, Geotechnical Engineering Report No. GR86-15
.
Austin, TX
:
University of Texas at Austin
.
57.
Santamarina
,
J. C.
and
Cascante
G.
.
1996
. “
Stress Anisotropy and Wave Propagation: A Micromechanical View
.”
Canadian Geotechnical Journal
33
(
November
):
770
782
. https://doi.org/10.1139/t96-102-32
58.
Santamarina
,
J. C.
and
Fratta
D.
.
2005
.
Discrete Signals and Inverse Problems: An Introduction for Engineers and Scientists
.
Hoboken, NJ
:
John Wiley & Sons
. https://doi.org/10.1002/0470021896
59.
Sawyer
,
B. D.
Cone Penetration Testing of Coarse-Grained Soils in the Centrifuge to Examine the Effects of Soil Gradation and Centrifuge Scaling
.” Master’s thesis,
University of California
,
2020
.
60.
Seed
,
H. B.
,
Wong
R. T.
,
Idriss
I. M.
, and
Tokimatsu
K.
.
1986
. “
Moduli and Damping Factors for Dynamic Analyses of Cohesionless Soils
.”
Journal of Geotechnical Engineering
112
, no. 
11
(November):
1016
1032
. https://doi.org/10.1061/(ASCE)0733-9410(1986)112:11(1016)
61.
Shi
,
J.
,
Haegeman
W.
,
Mascini
A.
, and
Cnudde
V.
.
2021
. “
X-ray Analysis on the Effect of Sample Preparation on the Microstructure of Calcareous Sands
.”
Marine Georesources & Geotechnology
39
, no. 
3
(December):
302
311
.
62.
Stokoe
,
K. H.
,
Wright
S. G.
,
Bay
J. A.
, and
Roesset
J. M.
.
1994
. “
Characterization of Geotechnical Sites by SASW Method
.” In
Geophysical Characterization of Sites
,
15
25
.
Rotterdam, the Netherlands
:
A. A. Balkema
.
63.
Stokoe
,
K. H.
,
Darendeli
M. B.
,
Andrus
R. D.
, and
Brown
L. T.
.
1999
. “
Dynamic Soil Properties: Laboratory, Field and Correlation Studies
.” In
Proceedings of the Second International Conference on Earthquake Geotechnical Engineering
,
811
845
.
Rotterdam, the Netherlands
:
A. A. Balkema
.
64.
Stokoe
,
K. H.
, II
and
Santamarina
J. C.
.
2000
. “
Seismic-Wave-Based Testing in Geotechnical Engineering
.” In
ISRM International Symposium
,
1490
1536
.
Lisbon, Portugal
:
International Society for Rock Mechanics and Rock Engineering
.
65.
Sturm
,
A. P.
On the Liquefaction Potential of Gravelly Soils: Characterization, Triggering and Performance
.” PhD diss.,
University of California
,
2019
.
66.
Sun
,
Q.
,
Zheng
J.
,
He
H.
, and
Li
Z.
.
2019
. “
Characterizing Fabric Anisotropy of Air-Pluviated Sands
.”
E3S Web of Conferences
92
: 01003. https://doi.org/10.1051/e3sconf/20199201003
67.
Tong
,
Z.
,
Fu
P.
,
Zhou
S.
, and
Dafalias
Y. F.
.
2014
. “
Experimental Investigation of Shear Strength of Sands with Inherent Fabric Anisotropy
.”
Acta Geotechnica
9
, no. 
2
:
257
275
. https://doi.org/10.1007/s11440-014-0303-6
68.
Viana da Fonseca
,
A.
,
Ferreira
C.
, and
Fahey
M.
.
2009
. “
A Framework Interpreting Bender Element Tests, Combining Time-Domain and Frequency-Domain Methods
.”
Geotechnical Testing Journal
32
, no. 
2
(December):
91
107
. https://doi.org/10.1520/GTJ100974
69.
Viggiani
,
G.
and
Atkinson
J. H.
.
1995
. “
Interpretation of Bender Element Tests
.”
Géotechnique
45
, no. 
1
(March):
149
154
. https://doi.org/10.1680/geot.1995.45.1.149
70.
Viggiani
,
G.
,
Andò
E.
,
Takano
D.
, and
Santamarina
J. C.
.
2014
. “
Laboratory X-ray Tomography: A Valuable Experimental Tool for Revealing Processes in Soils
.”
Geotechnical Testing Journal
38
, no. 
1
(October):
61
71
. https://doi.org/10.1520/GTJ20140060
71.
Wang
,
Y. H.
and
Mok
C. M.
.
2008
. “
Mechanisms of Small-Strain Shear-Modulus Anisotropy in Soils
.”
Journal of Geotechnical and Geoenvironmental Engineering
134
, no. 
10
(October):
1516
1530
. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:10(1516)
72.
Wiebicke
,
M.
,
Andò
E.
,
Viggiani
G.
, and
Herle
I.
.
2020
. “
Measuring the Evolution of Contact Fabric in Shear Bands with X-ray Tomography
.”
Acta Geotechnica
15
, no. 
1
(January):
79
93
. https://doi.org/10.1007/s11440-019-00869-9
73.
Yamashita
,
S.
,
Hori
T.
, and
Suzuki
T.
.
2005
. “
Effects of Initial and Induced Anisotropy on Initial Stiffness of Sand by Triaxial and Bender Elements Tests
.” In
First Japan-U.S. Workshop on Testing, Modeling, and Simulation
,
350
369
.
Reston, VA
:
American Society of Civil Engineers
.
74.
Yamashita
,
S.
,
Kawaguchi
T.
,
Nakata
Y.
,
Mikami
T.
,
Fujiwara
T.
, and
Shibuya
S.
.
2009
. “
Interpretation of International Parallel Test on the Measurement of Gmax Using Bender Elements
.”
Soils and Foundations
49
, no. 
4
(August):
631
650
. https://doi.org/10.3208/sandf.49.631
75.
Yang
,
Z. X.
,
Li
X. S.
, and
Yang
J.
.
2008
. “
Quantifying and Modelling Fabric Anisotropy of Granular Soils
.”
Géotechnique
58
, no. 
4
(April):
237
248
. https://doi.org/10.1680/geot.2008.58.4.237
76.
Yang
,
J.
and
Gu
X. Q.
.
2013
. “
Shear Stiffness of Granular Material at Small Strains: Does It Depend on Grain Size?
Géotechnique
63
, no. 
2
(February):
165
179
. https://doi.org/10.1680/geot.11.P.083
77.
Zdravković
,
L.
and
Jardine
R. J.
.
2001
. “
The Effect on Anisotropy of Rotating the Principal Stress Axes during Consolidation
.”
Géotechnique
51
, no. 
1
(February):
69
83
. https://doi.org/10.1680/geot.2001.51.1.69
78.
Zeng
,
X.
and
Ni
B.
.
1998
. “
Application of Bender Elements in Measuring Gmax of Sand under K0 Condition
.”
Geotechnical Testing Journal
21
, no. 
3
(September):
251
263
. https://doi.org/10.1520/GTJ10898J
79.
Zheng
,
J.
and
Hryciw
R. D.
.
2015
. “
Traditional Soil Particle Sphericity, Roundness and Surface Roughness by Computational Geometry
.”
Géotechnique
65
, no. 
6
(June):
494
506
. https://doi.org/10.1680/geot.14.P.192
80.
Zhou
,
Y.-G.
and
Chen
Y.-M.
.
2007
. “
Laboratory Investigation on Assessing Liquefaction Resistance of Sandy Soils by Shear Wave Velocity
.”
Journal of Geotechnical and Geoenvironmental Engineering
133
, no. 
8
(August):
959
972
. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:8(959)
This content is only available via PDF.
You do not currently have access to this content.