ABSTRACT

This paper describes a custom-designed Soil Poly-Axial Test System, SPAX-3000, developed to investigate the cross-anisotropic material properties of geomaterials under varying loading conditions. SPAX-3000, a mixed-boundary type of large-scale cyclic true triaxial apparatus (CTTA), is capable of applying a wide range of principal stress combinations on prismatic specimens of dimensions 152 × 152 × 304 mm. Two vertical and two horizontal load actuators on two opposite faces apply principal major (σ1) and intermediate (σ2) stresses independently to evaluate the performance of pavement structures under anisotropic stress states through resilient modulus (MR) testing. SPAX-3000 is controlled through software (CATS Software, provided by the manufacturer to provide advanced digital servo control of stresses and deformations). In this study, SPAX-3000 capabilities were evaluated through MR testing of both isotropic (urethane rubber) and cross-anisotropic materials (base, subbase, and subgrade) for the development of stress histories. The test results showed that SPAX-3000 is capable of determining MR independently of the anisotropy characteristics of the tested materials. Stress-hardening and stress-softening behaviors were observed for the coarse- and fine-grained geomaterials under different loading conditions. Anisotropy ratios (ratio of horizontal MR [MhR] to the vertical MR [MvR]) were determined for the base, subbase, and subgrade materials. MR test results showed that higher MvR results were obtained than that of MhR regardless of the loading conditions. The anisotropy ratios ranged from 0.08 to 0.21, 0.38 to 0.87, and 0.05 to 0.50 for the base, subbase, and subgrade materials, respectively. The highest MvR values (200–590 MPa) were obtained for the base material, whereas subbase material yielded the highest MhR (35–169 MPa). In general, stress-hardening behavior was observed for the geomaterials tested in both directions except for the stiffness of subgrade and subbase materials in the vertical direction.

References

1.
American Association of State Highway and Transportation Officials
.
1991
.
Standard Specification for Classification of Soils and Soil-Aggregate Mixtures for Highway Construction Purposes
. AASHTO M 145.
Washington, DC
:
American Association of State and Highway Transportation Officials
.
2.
American Association of State Highway and Transportation Officials
.
2017
.
Standard Method of Test for Determining the Resilient Modulus of Soils and Aggregate Materials
. AASHTO T 307-99.
Washington, DC
:
American Association of State and Highway Transportation Officials
.
3.
Adu-Osei
,
A.
,
D. N.
 
Little
, and
R. L.
 
Lytton
.
2001
. “
Cross-Anisotropic Characterization of Unbound Granular Materials
.”
Transportation Research Record: Journal of the Transportation Research Board
1757
, no. 
1
(January):
82
91
.
4.
Ahmed
,
M. U.
,
M. M.
 
Hasan
, and
R. A.
 
Tarefder
.
2016
. “
Investigating Stress Dependency of Unbound Layers Using Falling-Weight Deflectometer and Resilient Modulus Tests
.”
Geotechnical Testing Journal
39
, no. 
6
(January):
954
964
.
5.
Airey
,
D. W.
and
D. M.
 
Wood
.
1988
. “
The Cambridge True Triaxial Apparatus
.” In
Advanced Triaxial Testing of Soil and Rock
, edited by
R. T.
 
Donaghe
,
R. C.
 
Chaney
, and
M. L.
 
Silver
,
796
805
.
West Conshohocken, PA
:
ASTM International
. https://doi.org/10.1520/STP29115S
6.
AnhDan
,
L.
,
J.
 
Koseki
, and
T.
 
Sato
.
2006
. “
Evaluation of Quasi-elastic Properties of Gravel Using a Large-Scale True Triaxial Apparatus
.”
Geotechnical Testing Journal
29
, no. 
5
(June):
374
384
.
7.
ASTM International
.
Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate
. ASTM C127-15.
West Conshohocken, PA
:
ASTM International
, approved January 1,
2015
. https://doi.org/10.1520/C0127-15
8.
ASTM International
.
Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System)
. ASTM D2487-17e1.
West Conshohocken, PA
:
ASTM International
, approved December
15
,
2017
. https://doi.org/10.1520/D2487-17E01
9.
ASTM International
.
Standard Test Methods for the Determination of the Modulus and Damping Properties of Soils Using the Cyclic Triaxial Apparatus
. ASTM D3999-91(2003).
West Conshohocken, PA
:
ASTM International
, approved August 15,
1991
. https://doi.org/10.1520/D3999-91R03
10.
ASTM International
.
Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils
. ASTM D4318-17e1.
West Conshohocken, PA
:
ASTM International
, approved June
1
,
2017
. https://doi.org/10.1520/D4318-17E01
11.
ASTM International
.
Standard Practice for Correction of Unit Weight and Water Content for Soils Containing Oversize Particles
. ASTM D4718/D4718M-15.
West Conshohocken, PA
:
ASTM International
, approved December 15.
2015
. https://doi.org/10.1520/D4718_D4718M-15
12.
ASTM International
.
Standard Test Method for Load Controlled Cyclic Triaxial Strength of Soil
(Withdrawn). ASTM D5311/D5311M-13.
West Conshohocken, PA
:
ASTM International
, approved November 1,
2013
. https://doi.org/10.1520/D5311-11
13.
ASTM International
.
Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis
. ASTM D6913/D6913M-17.
West Conshohocken, PA
:
ASTM International
, approved April 15,
2017
. https://doi.org/10.1520/D6913_D6913M-17
14.
ASTM International
.
Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-lbf/ft3 (600 kN-m/m3))
. ASTM D698-12(2021).
West Conshohocken, PA
:
ASTM International
, approved July 1,
2021
. https://doi.org/10.1520/D0698-12R21
15.
ASTM International
.
Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer
. ASTM D854-14.
West Conshohocken, PA
:
ASTM International
, approved May 1,
2014
. https://doi.org/10.1520/D0854-14
16.
Aydin
,
C.
,
M.
 
Hatipoglu
,
B.
 
Cetin
, and
H.
 
Ceylan
.
2021
. “
Determination of the Resilient Modulus under Anisotropic Stress Conditions
.”
In International Foundations Congress and Equipment 2021, 381–389
.
Reston, VA
:
American Society of Civil Engineers
.
17.
Bell
,
J. M.
Stress-Strain Characteristics of Cohesionless Granular Materials Subjected to Statically Applied Homogenous Loads in an Open System
.” PhD diss.,
California Institute of Technology
,
1965
.
18.
Choi
,
C.
,
P.
 
Arduino
, and
M. D.
 
Harney
.
2008
. “
Development of a True Triaxial Apparatus for Sands and Gravels
.”
Geotechnical Testing Journal
31
, no. 
1
(August):
32
44
.
19.
Dorostkar
,
O.
and
A. A.
 
Mirghasemi
.
2018
. “
On the Micromechanics of True Triaxial Test, Insights from 3D DEM Study
.”
Civil Engineering (Shiraz)
42
, no. 
3
(September):
259
273
.
20.
Fedakar
,
H. I.
,
W.
 
Cai
,
C. J.
 
Rutherford
, and
B.
 
Cetin
.
2020
. “
Evaluation of Deformation Behavior of Sand-Clay Mixture under Traffic Loads
.” In
Geo-Congress 2020: Modeling, Geomaterials, and Site Characterization
, edited by
J. P.
 
Hambleton
,
R.
 
Makhnenko
, and
A. S.
 
Budge
,
201
209
.
Reston, VA
:
American Society of Civil Engineers
. https://doi.org/10.1061/9780784482803.022
21.
Fedakar
,
H. I.
,
B.
 
Cetin
, and
C. J.
 
Rutherford
.
2021
. “
Deformation Characteristics of Medium-Dense Sand-Clay Mixtures under a Principal Stress Rotation
.”
Transportation Geotechnics
30
(September):
100616
.
22.
Fedakar
,
H. I.
,
C. J.
 
Rutherford
, and
B.
 
Cetin
.
2021
. “
Effect of Principal Stress Rotation on Deformation Behavior of Dense Sand–Clay Mixtures
.”
Road Materials and Pavement Design
23
, no. 
9
:
2035
2056
.
23.
Graham
,
J.
and
G. T.
 
Houlsby
.
1983
. “
Anisotropic Elasticity of a Natural Clay
.”
Géotechnique
33
, no. 
2
(June):
165
180
.
24.
Green
,
G. E.
Strength and Compressibility of Granular Materials under Generalised Strain Condition
.” PhD diss.,
University of London,
1969
.
25.
Gu
,
F.
,
Y.
 
Zhang
,
X.
 
Luo
,
R.
 
Luo
, and
R. L.
 
Lytton
.
2016
. “
Impact of Geogrid on Cross-Anisotropy and Permanent Deformation of Unbound Granular Materials
.”
Transportation Research Record
2580
, no. 
1
(January):
34
46
.
26.
Hambly
,
E. C.
1969
. “
A New True Triaxial Apparatus
.”
Géotechnique
19
, no. 
2
(June):
307
309
.
27.
Hatipoglu
,
M.
,
B.
 
Cetin
, and
A. H.
 
Aydilek
.
2020
. “
Effects of Fines Content on Hydraulic and Mechanical Performance of Unbound Granular Base Aggregates
.”
Journal of Transportation Engineering. Part B, Pavements
146
, no. 
1
(March):
04019036
.
28.
Ibsen
,
L. B.
and
U.
 
Prasstrup
.
2002
. “
The Danish Rigid Boundary True Triaxial Apparatus for Soil Testing
.”
Geotechnical Testing Journal
25
, no. 
3
(September):
254
265
.
29.
Inam
,
A.
,
T.
 
Ishikawa
, and
S.
 
Miura
.
2012
. “
Effect of Principal Stress Axis Rotation on Cyclic Plastic Deformation Characteristics of Unsaturated Base Course Material
.”
Soil and Foundation
52
, no. 
3
(June):
465
480
.
30.
Jing
,
P.
,
H.
 
Nowamooz
, and
C.
 
Chazallon
.
2017
. “
Effect of Anisotropy on the Resilient Behaviour of a Granular Material in Low Traffic Pavement
.”
Materials (Basel)
10
, no. 
12
(December):
1382
.
31.
Kim
,
S. H.
,
D. N.
 
Little
,
E.
 
Masad
, and
R. L.
 
Lytton
.
2005
. “
Estimation of Level of Anisotropy in Unbound Granular Layers Considering Aggregate Physical Properties
.”
International Journal of Pavement Engineering
6
, no. 
4
(December):
217
227
.
32.
Kjellman
,
W.
1936
. “
Report on an Apparatus for Consummate Investigation of the Mechanical Properties of Soils
.” In
Proceedings of the First International Conference on Soil Mechanics and Foundation Engineering 2
,
16
20
.
London
:
International Society for Soil Mechanics and Geotechnical Engineering
.
33.
Ko
,
H. Y.
and
R. F.
 
Scott
.
1967
. “
A New Soil Testing Apparatus
.”
Géotechnique
17
, no. 
1
(March):
40
57
.
34.
Lade
,
P. V.
1978
. “
Cubical Triaxial Apparatus for Soil Testing
.”
Geotechnical Testing Journal
1
, no. 
2
(June):
93
101
.
35.
Lade
,
P. V.
and
A. V.
 
Abelev
.
2005
. “
Characterization of Cross-Anisotropic Soil Deposits from Isotropic Compression Tests
.”
Soil and Foundation
45
, no. 
5
:
89
102
.
36.
Lade
,
P. V.
and
J. M.
 
Duncan
.
1973
. “
Cubical Triaxial Tests on Cohesionless Soil
.”
Journal of the Soil Mechanics and Foundations Division
99
, no. 
10
(October):
793
812
.
37.
Lekarp
,
F.
,
U.
 
Isacsson
, and
A.
 
Dawson
.
2000
. “
State of the Art. I: Resilient Response of Unbound Aggregates
.”
Journal of Transportation Engineering
126
, no. 
1
(January):
66
75
.
38.
Lenart
,
S.
,
J.
 
Koseki
,
Y.
 
Miyashita
, and
T.
 
Sato
.
2014
. “
Large-Scale Triaxial Tests of Dense Gravel Material at Low Confining Pressures
.”
Soil and Foundation
54
, no. 
1
(February):
45
55
.
39.
Li
,
M.
,
G.
 
Yin
,
J.
 
Xu
,
W.
 
Li
,
Z.
 
Song
, and
C.
 
Jiang
.
2016
. “
A Novel True Triaxial Apparatus to Study the Geomechanical and Fluid Flow Aspects of Energy Exploitations in Geological Formations
.”
Rock Mechanics and Rock Engineering
49
, no. 
12
(December):
4647
4659
.
40.
Liu
,
Y.
,
D.
 
Stolle
,
P.
 
Guo
, and
J.
 
Emery
.
2014
. “
Stress-Path Dependency of Resilient Behaviour of Granular Materials
.”
International Journal of Pavement Engineering
15
, no. 
7
(August):
614
622
.
41.
Mandeville
,
D.
and
D.
 
Penumadu
.
2004
. “
True Triaxial Testing System for Clay with Proportional-Integral-Differential (PID) Control
.”
Geotechnical Testing Journal
27
, no. 
2
(February):
134
144
.
42.
de Melo
,
L. D.
and
B. P.
 
Cabral
.
2012
. “
Inherent Anisotropy in Pavement Subgrades
.” In
GeoCongress 2012: State of the Art and Practice in Geotechnical Engineering
, edited by
R. D.
 
Hryciw
,
A.
 
Athanasopoulos-Zekkos
, and
N.
 
Yesiller
,
1056
1065
.
Reston, VA
:
American Society of Civil Engineers
. https://doi.org/10.1061/9780784412121.109
43.
Menkiti
,
O. C.
Behaviour of Clay and Clayey-Sand, with Particular Reference to Principal Stress Rotation
.” PhD diss.,
Imperial College London University of London
,
1995
.
44.
Pan
,
X.
,
J.
 
Tong
,
L.
 
Guo
,
T.
 
Wu
,
Z.
 
Yuan
, and
H.
 
Sun
.
2022
. “
Effects of Principal Stress Rotation on Deformation Behaviour of Clay under Partially Drained and Undrained Conditions
.”
Soil Dynamics and Earthquake Engineering
154
(March):
107159
.
45.
Qian
,
J. G.
,
Y. G.
 
Wang
,
Z. Y.
 
Yin
, and
M. S.
 
Huang
.
2016
. “
Experimental Identification of Plastic Shakedown Behavior of Saturated Clay Subjected to Traffic Loading with Principal Stress Rotation
.”
Engineering Geology
214
(November):
29
42
.
46.
Qian
,
J.
,
Y.
 
Yao
,
J.
 
Li
,
H.
 
Xiao
, and
S.
 
Luo
.
2020
. “
Resilient Properties of Soil-Rock Mixture Materials: Preliminary Investigation of the Effect of Composition and Structure
.”
Materials (Basel)
13
, no. 
7
(April):
1658
.
47.
Reddy
,
K. R.
,
S. K.
 
Saxena
, and
J. S.
 
Budiman
.
1992
. “
Development of a True Triaxial Testing Apparatus
.”
Geotechnical Testing Journal
15
, no. 
2
(June):
89
105
.
48.
Salour
,
F.
and
S.
 
Erlingsson
.
2013
. “
Moisture-Sensitive and Stress-Dependent Behavior of Unbound Pavement Materials from In Situ Falling Weight Deflectometer Tests
.”
Transportation Research Record
2335
, no. 
1
(January):
121
129
.
49.
Seyhan
,
U.
and
E.
 
Tutumluer
.
2002
. “
Anisotropic Modular Ratios as Unbound Aggregate Performance Indicators
.”
Journal of Materials in Civil Engineering
14
, no. 
5
(October):
409
416
.
50.
Seyhan
,
U.
,
E.
 
Tutumluer
, and
H.
 
Yesilyurt
.
2005
. “
Anisotropic Aggregate Base Inputs for Mechanistic Pavement Analysis Considering Effects of Moving Wheel Loads
.”
Journal of Materials in Civil Engineering
17
, no. 
5
(October):
505
512
.
51.
Shao
,
S.
,
Q.
 
Wang
, and
A.
 
Luo
.
2017
. “
True Triaxial Apparatus with Rigid-Flexible-Flexible Boundary and Remolded Loess Testing
.”
Journal of Testing and Evaluation
45
, no. 
3
(May):
808
817
.
52.
Shao
,
S.
,
Y.
 
Wang
, and
S.
 
Shao
.
2021
. “
A Large-Scale True Triaxial Apparatus with Rigid-Flexible-Flexible Boundary for Granular Materials
.”
Geotechnical Testing Journal
44
, no. 
5
(September/October):
1179
1196
.
53.
Shapiro
,
S.
and
J. A.
 
Yamamuro
.
2003
. “
Effects of Silt on Three-Dimensional Stress–Strain Behavior of Loose Sand
.”
Journal of Geotechnical and Geoenvironmental Engineering
129
, no. 
1
(January):
1
11
.
54.
Sidess
,
A.
,
J.
 
Uzan
, and
P.
 
Nigem
.
2021
. “
Fundamental Characterisation of the Anisotropic Resilient Behaviour of Unbound Granular Materials
.”
International Journal of Pavement Engineering
22
, no. 
3
(February):
283
293
.
55.
Silvestri
,
V.
,
R. N.
 
Yong
, and
A. M. O.
 
Mohamed
.
1988
. “
A True Triaxial Testing Cell
.” In
Advanced Triaxial Testing of Soil and Rock
, edited by
R. T.
 
Donaghe
,
R. C.
 
Chaney
, and
M. L.
 
Silver
,
819
833
.
West Conshohocken, PA
:
ASTM International
. https://doi.org/10.1520/STP29117S
56.
Strahler
,
A. W.
,
A. W.
 
Stuedlein
, and
P.
 
Arduino
.
2018
. “
Three-Dimensional Stress-Strain Response and Stress-Dilatancy of Well-Graded Gravel
.”
International Journal of Geomechanics
18
, no. 
4
(April): 04018014.
57.
Sture
,
S.
and
C. S.
 
Desai
.
1979
. “
Fluid Cushion Truly Triaxial or Multiaxial Testing Device
.”
Geotechnical Testing Journal
2
, no. 
1
(March):
20
33
.
58.
Tutumluer
,
E.
2009
. “
State of the Art: Anisotropic Characterization of Unbound Aggregate Layers in Flexible Pavements
.” In
Pavements and Materials: Modeling, Testing, and Performance
, edited by
Z.
 
You
,
A. R.
 
Abbas
, and
L.
 
Wang
,
1
16
.
Reston, VA
:
American Society of Civil Engineers
.
59.
Tutumluer
,
E.
and
U.
 
Seyhan
.
1999
. “
Laboratory Determination of Anisotropic Aggregate Resilient Moduli Using an Innovative Test Device
.”
Transportation Research Record
1687
, no. 
1
(January):
13
21
.
60.
Voznesensky
,
E. A.
,
V. V.
 
Funikova
, and
V. A.
 
Babenko
.
2013
. “
Deformability Properties of Model Granular Soils under True Triaxial Compression Conditions
.”
Moscow University Geology Bulletin
68
, no. 
4
(July):
253
259
.
61.
Xie
,
W.-B.
,
G.-L.
 
Ye
,
Q.
 
Zhang
,
J.-J.
 
Chen
, and
F.
 
Zhang
.
2022
. “
A New True Triaxial Apparatus for Finite Deformation with a Novel Rigid–Flexible Loading Device
.”
Geotechnical Testing Journal
45
, no. 
4
(May):
707
724
,
62.
Yamada
,
Y.
and
K.
 
Ishihara
.
1979
. “
Anisotropic Deformation Characteristics of Sand under Three Dimensional Stress Conditions
.”
Soil and Foundation
19
, no. 
2
(June):
79
94
.
63.
Ye
,
G. L.
,
J. R.
 
Sheng
,
B.
 
Ye
, and
J. H.
 
Wang
.
2012
. “
Automated True Triaxial Apparatus and Its Application to Over-Consolidated Clay
.”
Geotechnical Testing Journal
35
, no. 
4
(July):
517
528
.
64.
Yin
,
J. H.
,
C. M.
 
Cheng
,
M.
 
Kumruzzaman
, and
W. H.
 
Zhou
.
2010
. “
New Mixed Boundary, True Triaxial Loading Device for Testing Three-Dimensional Stress–Strain–Strength Behaviour of Geomaterials
.”
Canadian Geotechnical Journal
47
, no. 
1
(January):
1
15
.
65.
Yin
,
J.-H.
,
W.-H.
 
Zhou
,
M.
 
Kumruzzaman
, and
C.-M.
 
Cheng
.
2011
. “
A Rigid-Flexible Boundary True Triaxial Apparatus for Testing Soils in a Three-Dimensional Stress State
.”
Geotechnical Testing Journal
34
, no. 
3
(May):
265
272
.
66.
Zhang
,
K. Y.
and
F. N.
 
Charkley
.
2017
. “
An Anisotropic Constitutive Model of Geomaterials Based on True Triaxial Testing and Its Application
.”
Journal of Central South University
24
, no. 
6
(June):
1430
1442
.
You do not currently have access to this content.