Abstract

The first one to four days constitutes a critical period in filling mining voids with cemented paste backfill (CPB, a mixture of mine tailings, binder, and water) and determining the saturated hydraulic conductivity (ksat) during this period is important to rational engineering design. However, most published studies started testing 24 h after specimen preparation, and those that started earlier did so by preconsolidating the specimens, which results in void ratios lower than those occurring in the field. This study uses a new test method that retains the backfill’s representative bulk properties and starts testing about one-half hour after specimen preparation. During backfilling, CPB undergoes three distinct ksat stages: a relatively constant high-value ksat stage associated with the portland cement’s (PC’s) dissolution phase; a rapidly declining ksat stage associated with PC’s acceleration phase; and then a slowly declining ksat stage associated with PC’s steady-stage and subsequent deceleration phase. The last two stages can be represented by modified Kozeny-Carman equations, in which the hydration effects are constant but different in each stage, and the ksat changes can be related to void ratio changes in each stage. In contrast, the distinct stages are not adequately represented by traditional PC “maturity” models, and, more importantly, the ksat values determined here are at least an order of magnitude higher than previously published results on similar materials.

References

1.
Abdelaal
,
A. M. G. M. I.
2011
.
Early Age Mechanical Behavior and Stiffness Development of Cemented Paste Backfill with Sand
.
Toronto Canada
:
University of Toronto
.
2.
Alcott
,
J.
,
Dallaire
D.
, and
Belem
T.
.
2019
. “
Pastefill Optimisation at Hecla Québec’s Casa Berardi Mine
.” In
53rd US Rock Mechanics/Geomechanics Symposium
, ARMA-2019-0231.
Alexandria, VA
:
American Rock Mechanics Association
.
3.
ASTM International.
2014
.
Standard Test Method for Specific Gravity of Soil Solids by Gas Pycnometer
. ASTM D5550 (
2014
).
West Conshohocken, PA
:
ASTM International
, approved December 15,
2014
. https://doi.org/10.1520/D5550-14
4.
ASTM International.
2015
.
Standard Test Method for Measurement of Hydraulic Conductivity of Porous Material Using a Rigid-Wall, Compaction-Mold Permeameter
. ASTM D5856 (2015).
West Conshohocken, PA
:
ASTM International
, approved June 1,
2015
. https://doi.org/10.1520/D5856-15
5.
ASTM International.
2016
.
Standard Test Method for Unconfined Compressive Strength of Cohesive Soil
. ASTM D2166/D2166M-16 (2016).
West Conshohocken, PA
:
ASTM International
, approved July 1, 2016. https://doi.org/10.1520/D2166_D2166M-16
6.
ASTM International.
2017
.
Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis
. ASTM D6913 (2017).
West Conshohocken, PA
:
ASTM International
, approved April 15,
2017
. https://doi.org/10.1520/D6913_D6913M-17
7.
ASTM International.
2018
.
Standard Test Methods for Laboratory Determination of Density (Unit Weight) of Soil Specimens
. ASTM D7263 (2018).
West Conshohocken, PA
:
ASTM International
, approved February 15,
2018
. https://doi.org/10.1520/D726309R18
8.
ASTM International.
2017
.
Standard Test Method for Particle-Size Distribution (Gradation) of Fine Grained Soils Using the Sedimentation (Hydrometer) Analysis
. ASTM D7928 (2017).
West Conshohocken, PA
:
ASTM International
, approved May 1,
2017
. https://doi.org/10.1520/D7928-17
9.
ASTM International.
2020
.
Standard Specification For Portland Cement
. ASTM C150/C150M (2020).
West Conshohocken, PA
:
ASTM International
, approved April 1,
2020
. https://doi.org/10.1520/C0150_C0150M-20
10.
Aubertin
,
M.
,
Bussiere
B.
, and
Chapuis
R. P.
.
1996
.
Hydraulic Conductivity of Homogenized Tailings from Hard Rock Mines
.
Canadian Geotechnical Journal
33
, no. 
3
(July):
470
482
. https://doi.org/10.1139/t96-068
11.
Belem
,
T.
,
Benzaazoua
M.
, and
Bussière
B.
.
2000
. “
Mechanical Behaviour of Cemented Paste Backfill
.” In
Montreal 2000: 53rd Annual Conference of the Canadian Geotechnical Society, Vol. 1
,
373
380
.
Montreal, Canada
:
Canadian Geotechnical Society
.
12.
Benzaazoua
,
M.
,
Fall
M.
, and
Belem
T.
.
2004
. “
A Contribution to Understanding the Hardening Process of Cemented Pastefill
.”
Minerals Engineering
17
, no. 
2
(
February
):
141
152
. https://doi.org/10.1016/j.mineng.2003.10.022
13.
Bowders
,
J. J.
,
Neupane
D.
, and
Loehr
J.
.
2002
. “
Sidewall Leakage in Hydraulic Conductivity Testing of Asphalt Concrete Specimens
.”
Geotechnical Testing Journal
25
, no. 
2
(June):
210
214
. https://doi.org/10.1520/GTJ11364J.
14.
Canadian Standards Association.
2013
.
Cementitious Materials Compendium
. CSA A3000 (2013). Mississauga, Canada:
Canadian Standards Association
.
15.
Carman
,
P. C.
1956
.
Flow of Gas through Porous Media
.
New York
:
Academic Press, Inc
.
16.
Cayouette
,
J.
2003
. “
Optimization of Paste Backfill Plant at Louvicourt Mine
.”
CIM Bulletin
96
, no. 
1075
(November):
51
57
.
17.
Chapuis
,
R. P.
and
Aubertin
M.
.
2003
. “
On the Use of the Kozeny–Carman Equation to Predict the Hydraulic Conductivity of Soils
.”
Canadian Geotechnical Journal
40
, no. 
3
(June):
616
628
. https://doi.org/10.1139/t03-013
18.
Christensen
,
B. J.
,
Mason
T. O.
, and
Jennings
H. M.
.
1992
. “
Influence of Silica Fume on the Early Hydration of Portland Cements Using Impedance Spectroscopy
.”
Journal of the American Ceramic Society
75
, no. 
4
(April):
939
945
. https://doi.org/10.1111/j.1151-2916.1992.tb04163.x
19.
Cui
,
L.
and
Fall
M.
.
2015
. “
A Coupled Thermo–Hydro-Mechanical–Chemical Model for Underground Cemented Tailings Backfill
.”
Tunnelling and Underground Space Technology
50
(August):
396
414
. https://doi.org/10.1016/j.tust.2015.08.014
20.
Doherty
,
J. P.
2015
. “
A Numerical Study into Factors Affecting Stress and Pore Pressure in Free Draining Mine Stopes
.”
Computers and Geotechnics
63
(January):
331
341
. https://doi.org/10.1016/j.compgeo.2014.10.001
21.
El Mkadmi
,
N.
,
Aubertin
M.
, and
Li
L.
.
2014
. “
Effect of Drainage and Sequential Filling on the Behavior of Backfill in Mine Stopes
.”
Canadian Geotechnical Journal
51
, no. 
1
(January):
1
15
. https://doi.org/10.1139/cgj-2012-0462
22.
Fahey
,
M.
,
Helinski
M.
, and
Fourie
A.
.
2011
. “
Development of Specimen Curing Procedures that Account for the Influence of Effective Stress during Curing on the Strength of Cemented Mine Backfill
.”
Geotechnical and Geological Engineering
29
, no. 
5
(September):
709
723
. https://doi.org/10.1007/s10706-011-9412-2
23.
Fall
,
M.
,
Adrien
D.
,
Célestin
J. C.
,
Pokharel
M.
, and
Touré
M.
.
2009
. “
Saturated Hydraulic Conductivity of Cemented Paste Backfill
.”
Minerals Engineering
22
, no. 
15
(December):
1307
1317
. https://doi.org/10.1016/j.mineng.2009.08.002
24.
Fetter
,
C. W.
2001
.
Applied Hydrogeology
.
Upper Saddle River, NJ
:
Prentice Hall
.
25.
Godbout
,
J.
,
Bussiere
B.
,
Aubertin
M.
, and
Belem
T.
.
2007
. “
Evolution of Cemented Paste Backfill Saturated Hydraulic Conductivity at Early Curing Time
.” In
OttawaGeo2007: 60th Canadian Geotechnical Conference
,
2230
2236
.
Ottawa, Canada
:
Canadian Geotechnical Society
.
26.
Grabinsky
,
M. W.
,
Bawden
W.
, and
Simon
D.
. n.d. “
In Situ Properties of Cemented Paste Backfill from Three Mines
.”
Paper presented at the 66th Canadian Geotechnical Conference
,
Montreal, Canada
, September 29–October 3, 2013.
27.
Grabinsky
,
M.
,
Bawden
W.
,
Simon
D.
, and
Thompson
B.
.
2008
. “
In Situ Properties of Cemented Paste Backfill in an Alimak Stope
.” In
61st Canadian Geotechnical Conference
,
790
796
.
Edmonton, Canada
:
Canadian Geotechnical Society
.
28.
Grabinsky
,
M.
,
Jafari
M.
, and
Pan
A.
.
2022
. “
Cemented Paste Backfill (CPB) Material Properties for Undercut Analysis
.”
Mining
2
, no. 
1
(March):
103
122
. https://doi.org/10.3390/mining2010007
29.
Helinski
,
M.
,
Fahey
M.
, and
Fourie
A.
.
2007
. “
Numerical Modeling of Cemented Mine Backfill Deposition
.”
Journal of Geotechnical and Geoenvironmental Engineering
133
, no. 
10
(October):
1308
1319
. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:10(1308)
30.
Helinski
,
M.
,
Fahey
M.
, and
Fourie
A.
.
2010
. “
Coupled Two-Dimensional Finite Element Modelling of Mine Backfilling with Cemented Tailings
.”
Canadian Geotechnical Journal
47
, no. 
11
(November):
1187
1200
. https://doi.org/10.1139/t10-020
31.
Helinski
,
M.
,
Fourie
A.
,
Fahey
M.
, and
Ismail
M.
.
2007
. “
Assessment of the Self-Desiccation Process in Cemented Mine Backfills
.”
Canadian Geotechnical Journal
44
, no. 
10
(October):
1148
1156
. https://doi.org/10.1139/T07-051
32.
Hubbert
,
M. K.
1957
. “
Darcy’s Law and the Field Equations of the Flow of Underground Fluids
.”
International Association of Scientific Hydrology Bulletin
2
, no. 
1
:
23
59
. https://doi.org/10.1080/02626665709493062
33.
Jafari
,
M
. “
Experimental Study of Physical and Mechanical Properties of a Cemented Mine Tailings
.” PhD diss.,
University of Toronto
,
2020
.
34.
Jafari
,
M.
and
Grabinsky
M.
.
2021
. “
Effect of Hydration on Failure Surface Evolution of Low Sulfide Content Cemented Paste Backfill
.”
International Journal of Rock Mechanics and Mining Sciences
144
(August): 104749. https://doi.org/10.1016/j.ijrmms.2021.104749
35.
Jafari
,
M.
,
Shahsavari
M.
, and
Grabinsky
M.
.
2019
. “
Hydration Effects on Specific Gravity and Void Ratio of Cemented Paste Backfill
.”
Geotechnical Testing Journal
43
, no. 
5
(December):
1300
1316
. https://doi.org/10.1520/GTJ20190094
36.
Jafari
,
M.
,
Shahsavari
M.
, and
Grabinsky
M.
.
2020
a. “
Cemented Paste Backfill 1-D Consolidation Results Interpreted in the Context of Ground Reaction Curves
.”
Rock Mechanics and Rock Engineering
53
, no. 
9
(September):
4299
4308
. https://doi.org/10.1007/s00603-020-02173-5
37.
Jafari
,
M.
,
Shahsavari
M.
, and
Grabinsky
M.
.
2020
b. “
Experimental Study of the Behavior of Cemented Paste Backfill under High Isotropic Compression
.”
Journal of Geotechnical and Geoenvironmental Engineering
146
, no. 
11
(November): 06020019. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002383
38.
Jafari
,
M.
,
Shahsavari
M.
, and
Grabinsky
M.
.
2021
. “
Drained Triaxial Compressive Shear Response of Cemented Paste Backfill (CPB)
.”
Rock Mechanics and Rock Engineering
54
, no. 
6
(June):
3309
3325
. https://doi.org/10.1007/s00603-021-02464-5
39.
Jamali
,
M
. “
Effect of Binder Content and Load History on the One-Dimensional Compression of Williams Mine Cemented Paste Backfill
.” Master’s thesis,
University of Toronto
,
2012
.
40.
Kesimal
,
A.
,
Yilmaz
E.
,
Ercikdi
B.
,
Alp
I.
, and
Deveci
H.
.
2005
. “
Effect of Properties of Tailings and Binder on the Short- and Long-Term Strength and Stability of Cemented Paste Backfill
.”
Materials Letters
59
, no. 
28
(December):
3703
3709
. https://doi.org/10.1016/j.matlet.2005.06.042
41.
Klein
,
K.
and
Simon
D.
.
2006
. “
Effect of Specimen Composition on the Strength Development in Cemented Paste Backfill
.”
Canadian Geotechnical Journal
43
, no. 
3
(March):
310
324
. https://doi.org/10.1139/t06-005
42.
Kovacs
,
G.
1981
.
Seepage Hydraulics
.
Amsterdam, the Netherlands
:
Elsevier Science Publishers
.
43.
Kozeny
,
J.
1953
.
Hydraulics
.
Amsterdam, the Netherlands
:
Elsevier Scientific Publication
.
44.
Le Roux
,
K.
, “
In-Situ Properties and Liquefaction Potential of Cemented Paste Backfill
.” PhD diss., University of Toronto,
2004
.
45.
Marhall
,
T. J.
,
Holmes
J. W.
, and
Rose
C. W.
.
1996
.
Soil Physics
.
Cambridge, UK
:
Cambridge University Press
.
46.
Mbonimpa
,
M.
,
Aubertin
M.
,
Chapuis
R. P.
, and
Bussière
B.
.
2002
. “
Practical Pedotransfer Functions for Estimating the Saturated Hydraulic Conductivity
.”
Geotechnical and Geological Engineering
20
, no. 
3
(September):
235
259
. https://doi.org/10.1023/A:1016046214724
47.
McCarter
,
W. J.
and
Afshar
A. B.
.
1984
. “
Some Aspects of the Electrical Properties of Cement Paste
.”
Journal of Materials Science Letters
3
, no. 
12
(December):
1083
1086
. https://doi.org/10.1007/BF00719771
48.
Mesri
,
G.
and
Olson
R. E.
.
1971
. “
Mechanisms Controlling the Permeability of Clays
.”
Clays and Clay Minerals
19
, no. 
3
(June):
151
158
. https://doi.org/10.1346/CCMN.1971.0190303
49.
METER Group Inc.
2019
a.
Operation Manual: GS3
.
Pullman, WA
:
METER Group
.
50.
METER Group Inc.
2019
b.
Operation Manual: KSAT
.
Pullman, WA
:
METER Group
.
51.
Mitchell
,
J. K.
and
Younger
J. S.
.
1967
. “
Abnormalities in Hydraulic Flow through Fine-Grained Soils
.” In
Permeability and Capillarity of Soils
, edited by
Johnson
A.
,
106
141
.
West Conshohocken, PA
:
ASTM International
. https://doi.org/10.1520/STP47262S.
52.
Moukwa
,
M.
,
Brodwin
M.
,
Christo
S.
,
Chang
J.
, and
Shah
S. P.
.
1991
. “
The Influence of the Hydration Process upon Microwave Properties of Cements
.”
Cement and Concrete Research
21
, no. 
5
(September):
863
872
. https://doi.org/10.1016/0008-8846(91)90181-G
53.
Narasimha Raju
,
P. S. R.
,
Pandian
N. S.
, and
Nagaraj
T. S.
.
1995
. “
Analysis and Estimation of the Coefficient of Consolidation
.”
Geotechnical Testing Journal
18
, no. 
2
(
June
):
252
258
. https://doi.org/10.1520/GTJ10325J
54.
Olsen
,
H. W.
1961
.
Hydraulic Flow through Saturated Clay
.
Cambridge, MA
:
Massachusetts Institute of Technology
.
55.
Orr
,
D. M. F.
n.d. “
Structure and Strength of Portland Cement Mixes at Early Age
.” Paper presented at the International Conference on Concrete of Early Ages, Ecole Nationale des Ponts et Chaussees, Paris, France, April, 6–8,
1982
.
56.
Ouellet
,
S.
,
Bussière
B.
,
Aubertin
M.
, and
Benzaazoua
M.
.
2007
. “
Microstructural Evolution of Cemented Paste Backfill: Mercury Intrusion Porosimetry Test Results
.”
Cement and Concrete Research
37
, no. 
12
(December):
1654
1665
. https://doi.org/10.1016/j.cemconres.2007.08.016
57.
Pan
,
A.
,
Jafari
M.
,
Guo
L.
, and
Grabinsky
M.
.
2021
. “
Hybrid Failure of Cemented Paste Backfill
.”
Minerals
11
: 1141.
58.
Pane
,
V.
,
Croce
P.
,
Znidarcic
D.
,
Ko
H.-Y.
,
Olsen
H. W.
, and
Schiffman
R. L.
.
1983
. “
Effects of Consolidation on Permeability Measurements for Soft Clay
.”
Geotechnique
33
, no. 
1
(March):
67
72
. https://doi.org/10.1680/geot.1983.33.1.67
59.
Perez-Pena
,
M.
,
Roy
D. M.
, and
Tamás
F. D.
.
1989
. “
Influence of Chemical Composition and Inorganic Admixtures on the Electrical Conductivity of Hydrating Cement Pastes
.”
Journal of Materials Research
4
, no. 
1
(January):
215
223
. https://doi.org/10.1557/JMR.1989.0215
60.
Perrot
,
A.
,
Rangeard
D.
,
Picandet
V.
, and
Mélinge
Y.
.
2013
. “
Hydro-mechanical Properties of Fresh Cement Pastes Containing Polycarboxylate Superplasticizer
.”
Cement and Concrete Research
53
(November):
221
228
. https://doi.org/10.1016/j.cemconres.2013.06.015
61.
Pierce
,
M.
,
Bawden
W. F.
, and
Paynter
J. T.
. n.d. “
Laboratory Testing and Stability Analysis of Paste Backfill at the Golden Giant Mine
.” Paper presented at the Sixth International Symposium on Mining with Backfill, Brisbane, Australia, April 14–16,
1998
.
62.
Ramlochan
,
T.
,
Grabinsky
M. W.
, and
Hooton
R. D.
. n.d. “
Microstructural and Chemical Investigation of Cemented Paste Backfill
.” Paper presented at the 11th Tailings and Mine Waste Conference, Vail, CO, October
10–13
, 2004.
63.
Rastrup
,
E.
n.d. “
The Temperature Function for Heat of Hydration in Concrete
.” Paper presented at the RILEM Symposium on Winter Concreting, Copenhagen, Denmark, February,
1956
.
64.
Regourd
,
M.
1986
. “
Microstructure of Cement Blends Containing Fly Ash, Silica Fume, Slag and Fillers
.”
MRS Online Proceedings Library
85
, no. 1 (December):
187
199
. https://doi.org/10.1557/PROC-85-187
65.
Saebimoghaddam
,
A
. “
Liquefaction of Early Age Cemented Paste Backfill
.” PhD diss., University of Toronto,
2010
.
66.
Samarsinghe
,
A. M.
,
Huang
Y. H.
, and
Drnevich
V. P.
.
1982
. “
Permeability and Consolidation of Normally Consolidated Soils
.”
Journal of the Geotechnical Engineering Division
108
, no. 
6
(June):
835
850
. https://doi.org/10.1061/AJGEB6.0001305
67.
Shahsavari
,
M
. “
Effects of Transient Hydro-mechanical Cemented Paste Tailings Properties on One-Dimensional Deposition Behaviour
.” PhD diss., University of Toronto,
2020
.
68.
Shahsavari
,
M.
and
Grabinsky
M. W.
. n.d. “
Mine Backfill Porewater Pressure Dissipation: Numerical Predictions and Field Measurements
.” Paper presented at the 68th Canadian Geotechnical Conference, Quebec City, Canada, September 20–23,
2015
.
69.
Shahsavari
,
M.
,
Jafari
M.
, and
Grabinsky
M.
.
2022
. “
Influence of Load Path and Effective Stress on One-Dimensional Deformation of Cemented Paste Backfill (CPB) during Deposition and Curing
.”
Geotechnical and Geological Engineering
40
, no. 
4
(April):
2319
2338
. https://doi.org/10.1007/s10706-021-02030-4
70.
Simms
,
P.
and
Grabinsky
M.
.
2009
. “
Direct Measurement of Matric Suction in Triaxial Tests on Early-Age Cemented Paste Backfill
.”
Canadian Geotechnical Journal
46
, no. 1 (January):
93
101
. https://doi.org/10.1139/t08-098
71.
Simon
,
D.
Microscale Analysis of Cemented Paste Backfill
.” PhD diss., University of Toronto,
2004
.
72.
Simon
,
D.
and
Grabinsky
M.
. n.d. “
Effect of Flu Ash on the Hydration Process in Cemented Paste Backfill at Early Stages
.” Paper presented at the 62nd Canadian Geotechnical Conference, Halifax, Nova Scotia, Canada, September 21–23,
2009
.
73.
Soroka
,
I.
1980
.
Portland Cement, Paste and Concrete
.
New York
:
John Wiley & Sons
.
74.
Tamás
,
F. D.
1982
. “
Electrical Conductivity of Cement Pastes
.”
Cement and Concrete Research
12
, no. 
1
(January):
115
120
. https://doi.org/10.1016/0008-8846(82)90106-5
75.
Taylor
,
H. F. W.
1997
.
Cement Chemistry
.
New York
:
John Wiley & Sons
.
76.
Thompson
,
B. D.
,
Bawden
W. F.
, and
Grabinsky
M. W.
.
2012
. “
In Situ Measurements of Cemented Paste Backfill at the Cayeli Mine
.”
Canadian Geotechnical Journal
49
, no. 
7
(July):
755
772
. https://doi.org/10.1139/t2012-040
77.
Thompson
,
B. D.
,
Grabinsky
M. W.
,
Veenstra
R.
, and
Bawden
W. F.
.
2011
. “
In Situ Pressures in Cemented Paste Backfill — A Review of Fieldwork from Three Mines
.” In
Paste 2011: Proceedings of the 14th International Seminar on Paste and Thickened Tailings
, edited by
Jewell
R.
and
Fourie
A. B.
,
491
503
.
Perth, Australia
:
Australian Centre for Geomechanics
. https://doi.org/10.36487/ACG_rep/1104_42_Thompson
78.
Thottarah
,
S.
Electromagnetic Characterization of Cemented Paste Backfill in the Field and Laboratory
.” Master’s thesis, University of Toronto,
2010
.
79.
Veenstra
,
R. L
. “
A Design Procedure for Determining the In-Situ Stresses of Early Age Cemented Paste Backfill
.” PhD diss., University of Toronto,
2013
.
80.
Xu
,
W.
,
Zhang
Y.
, and
Liu
B.
.
2020
.
Influence of Silica Fume and Low Curing Temperature on Mechanical Property of Cemented Paste Backfill
.
Construction & Building Materials
254
(September): 119305. https://doi.org/10.1016/j.conbuildmat.2020.119305
81.
Xu
,
W.
,
Zhang
Y.
,
Zuo
X.
, and
Hong
M.
.
2020
. “
Time-Dependent Rheological and Mechanical Properties of Silica Fume Modified Cemented Tailings Backfill in Low Temperature Environment
.”
Cement and Concrete Composites
114
(November): 103804. https://doi.org/10.1016/j.cemconcomp.2020.103804
82.
Yilmaz
,
E.
,
Belem
T.
, and
Benzaazoua
M.
.
2014
. “
Effects of Curing and Stress Conditions on Hydromechanical, Geotechnical and Geochemical Properties of Cemented Paste Backfill
.”
Engineering Geology
168
(January):
23
37
. https://doi.org/10.1016/j.enggeo.2013.10.024
83.
Zhang
,
X.
,
Ding
X. Z.
,
Ong
C. K.
,
Tan
B. T. G.
, and
Yang
J.
.
1996
. “
Dielectric and Electrical Properties of Ordinary Portland Cement and Slag Cement in the Early Hydration Period
.”
Journal of Materials Science
31
, no. 
5
(March):
1345
1352
. https://doi.org/10.1007/BF00353116
This content is only available via PDF.
You do not currently have access to this content.