Abstract

Still commonly used today, timber piles represent a cost-effective deep foundation alternative for carrying structural loads or densifying liquefaction-susceptible soil deposits. However, the range in interface shear friction angles between common timber pile types and sand is unknown, and little data exist for wood specimens in the range of normal stresses typically encountered in the field. This study evaluates the use of laser-scanning techniques for the quantification of surface roughness and presents the results of interface shear tests conducted on untreated Southern Pine, treated Southern Pine, and untreated Douglas Fir. The surface roughness of the timber pile specimens was found to be anisotropic, with surface roughness approximately three to four times larger in the circumferential direction than the longitudinal direction, presenting implications for torsional and axial load transfer. The peak and constant volume effective interface friction angles and interface friction ratios were relatively insensitive to relative density for the range in relative densities investigated, whereas the interface response was sensitive to normal stress. The role of surface roughness and surface hardness on the interface response was determined to be statistically significant and confounded by the inverse relationship observed between hardness and roughness for the species of timber pile investigated.

References

1.
Acar
,
Y. B.
,
Durgunoglu
H. T.
, and
Tumay
M. T.
.
1982
. “
Interface Properties of Sand
.”
Journal of the Geotechnical Engineering Division
108
, no. 
4
(April):
648
654
.
2.
Adams
,
S. L.
,
MacLaughlin
M. M.
,
Berry
K. G.
,
McCormick
M. L.
,
Berry
S. M.
,
McGough
M.
, and
Hudyma
N.
.
2014
. “
Three–Dimensional Roughness Characterization of Rock Joints Using Laser Scanning and Wind Diagrams
.” In
48th U.S. Rock Mechanics/Geomechanics Symposium
, ARMA-2014-7454.
Alexandria, VA
:
American Rock Mechanics Association
.
3.
Airey
,
D. W.
,
Budhu
M.
, and
Wood
D. M.
.
1985
. “
Some Aspects of the Behaviour of Soils in Simple Shear
.” In
Development in Soil Mechanics and Foundation Engineering. Vol. 2: Stress-Strain Modelling of Soils
,
185
213
.
London, UK
:
Elsevier Applied Science Publishers
.
4.
Anochie-Boateng
,
J. K.
,
Komba
J. J.
, and
Mvelase
G. M.
.
2013
. “
Three–Dimensional Laser Scanning Technique to Quantify Aggregate and Ballast Shape Properties
.”
Construction and Building Materials
43
(June):
389
398
. https://doi.org/10.1016/j.conbuildmat.2013.02.062
5.
Asahina
,
D.
and
Taylor
M. A.
.
2011
. “
Geometry of Irregular Particles: Direct Surface Measurements by 3–D Laser Scanner
.”
Powder Technology
213
, nos.
1–3
(November):
70
78
. https://doi.org/10.1016/j.powtec.2011.07.008
6.
ASTM International.
2007
.
Standard Test Method for Particle–Size Analysis of Soils (Withdrawn 2016)
. ASTM D422-63(2007).
West Conshohocken, PA
:
ASTM International
, approved October 15, 2007. https://doi.org/10.1520/D0422-63R07
7.
ASTM International.
2014
.
Standard Test Methods for Small Clear Specimens of Timber
. ASTM D143-14.
West Conshohocken, PA
:
ASTM International
, approved February 1, 2014. https://doi.org/10.1520/D0143-14
8.
ASTM International.
2016
a.
Standard Test Method for Minimum Index Density and Unit Weight of Soils and Calculation of Relative Density
. ASTM D4254-16.
West Conshohocken, PA
:
ASTM International
, approved March 1,
2016
. https://doi.org/10.1520/D4254-16
9.
ASTM International.
2016
b.
Standard Test Method for Maximum Index Density and Unit Weight of Soils Using a Vibratory Table
. ASTM D4253-16.
West Conshohocken, PA
:
ASTM International
, approved March 1, 2016. https://doi.org/10.1520/D4253-16
10.
Bong
,
T.
and
Stuedlein
A. W.
.
2017
. “
Spatial Variability of CPT Parameters and Silty Fines in Liquefiable Beach Sands
.”
Journal of Geotechnical and Geoenvironmental Engineering
143
, no. 
12
(December): 04017093. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001789
11.
Bong
,
T.
and
Stuedlein
A. W.
.
2018
. “
Effect of Cone Penetration Conditioning on Random Field Model Parameters and Impact of Spatial Variability on Liquefaction-Induced Differential Settlements
.”
Journal of Geotechnical and Geoenvironmental Engineering
144
, no. 
5
(May): 04018018. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001863
12.
Brumund
,
W. F.
and
Leonards
G. A.
.
1973
. “
Experimental Study of Static and Dynamic Friction between Sand and Typical Construction Materials
.”
Journal of Testing and Evaluation
1
no. 
2
(March):
162
165
. https://doi.org/10.1520/JTE10893J
13.
Collin
,
J. G.
2016
.
Timber Pile Design and Construction Manual
. Starkville, MS: Timber Piling Council, Southern Pressure Treaters’ Association.
14.
DeJong
,
J. T.
and
Westgate
Z. J.
.
2009
. “
Role of Initial State, Material Properties, and Confinement Condition on Local and Global Soil-Structure Interface Behavior
.”
Journal of Geotechnical and Geoenvironmental Engineering
135
, no. 
11
(November):
1646
1660
. https://doi.org/10.1061/(ASCE)1090-0241(2009)135:11(1646)
15.
Desai
,
C. S.
,
Drumm
E. C.
, and
Zaman
M. M.
.
1985
. “
Cyclic Testing and Modeling of Interfaces
.”
Journal of Geotechnical Engineering
111
, no. 
6
(June):
793
815
. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:6(793)
16.
Dove
,
J. E.
and
Frost
J. D.
.
1999
. “
Peak Friction Behavior of Smooth Geomembrane-Particle Interfaces
.”
Journal of Geotechnical and Geoenvironmental Engineering
125
, no. 
7
(July):
544
555
. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:7(544)
17.
Dove
,
J. E.
and
Jarrett
J. B.
.
2002
. “
Behavior of Dilative Sand Interfaces in a Geotribology Framework
.”
Journal of Geotechnical and Geoenvironmental Engineering
128
, no. 
1
(January):
25
37
. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:1(25)
18.
Durgunoglu
,
H. T.
and
Mitchell
J. K.
.
1975
. “
Static Penetration Resistance of Soils: II–Evaluation of Theory and Implications for Practice
.” In
In Situ Measurement of Soil Properties
,
172
189
.
New York, NY
:
American Society of Civil Engineers
.
19.
Forest Products Laboratory.
2015
.
Wood Handbook—Wood as an Engineering Material, General Technical Report FPL–GTR–190
.
Madison, WI
:
U.S. Department of Agriculture, Forest Service
.
20.
Frost
,
J. D.
,
DeJong
J. T.
, and
Recalde
M.
.
2002
. “
Shear Failure Behavior of Granular–Continuum Interfaces
.”
Engineering Fracture Mechanics
69
, no. 
17
(November):
2029
2048
. https://doi.org/10.1016/S0013-7944(02)00075-9
21.
Gianella
,
T. N.
Ground Improvement and Liquefaction Mitigation Using Driven Timber Piles
.” Master’s thesis,
Oregon State University
,
2015
.
22.
Gianella
,
T. N.
and
Stuedlein
A. W.
.
2017
. “
Performance of Driven Displacement Pile–Improved Ground in Controlled Blasting Field Tests
.”
Journal of Geotechnical and Geoenvironmental Engineering
143
, no. 
9
(September): 04017047. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001731
23.
Gómez
,
J. E.
,
Filz
G. M.
, and
Ebeling
R. M.
.
2003
. “
Extended Hyperbolic Model for Sand-to-Concrete Interfaces
.”
Journal of Geotechnical and Geoenvironmental Engineering
129
, no. 
11
(November):
993
1000
. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:11(993)
24.
Gómez–Pujol
,
L.
,
Fornós
J. J.
, and
Swantesson
J. O. H.
.
2006
. “
Rock Surface Millimetre–Scale Roughness and Weathering of Supratidal Mallorcan Carbonate Coasts (Balearic Islands)
.”
Earth Surface Processes and Landforms
31
, no. 
14
(December):
1792
1801
. https://doi.org/10.1002/esp.1379
25.
Hannigan
,
P. J.
,
Rausche
F.
,
Likins
G. E.
,
Robinson
B. R.
, and
Becker
M. L.
.
2016
.
Design and Construction of Driven Pile Foundations – Volume I, Report No. FHWA-NHI-16-009
.
Washington, DC
:
National Highway Institute, U.S. Department of Transportation
.
26.
Hillman
,
R. P.
and
Stark
T. D.
.
2001
. “
Shear Strength Characteristics of PVC Geomembrane–Geosynthetic Interfaces
.”
Geosynthetics International
8
, no. 
2
(January):
135
162
. https://doi.org/10.1680/gein.8.0190
27.
Holloway
,
D. M.
,
Clough
G. W.
, and
Vesić
A. S.
.
1975
.
The Mechanics of Pile-Soil Interaction in Cohesionless Soils, Research Report
.
Durham, NC
:
Duke University
.
28.
Hudyma
,
N.
,
Bathini
R.
,
Harris
A.
, and
MacLaughlin
M. M.
.
2012
. “
Mapping Surface Vesicles of a Cylindrical Basalt Specimen Using Laser Scanning
.” In
GeoCongress 2012: State of the Art and Practice in Geotechnical Engineering
,
3011
3020
.
Reston, VA
:
American Society of Civil Engineers
.
29.
Jardine
,
R. J.
,
Lehane
B. M.
, and
Everton
S. J.
.
1993
. “
Friction Coefficients for Piles in Sands and Silts
.” In
Offshore Site Investigation and Foundation Behavior
,
661
677
.
London, UK
:
Kluwer Academic Publishers
.
30.
Kjellman
,
W.
1951
. “
Testing the Shear Strength of Clay in Sweden
.”
Géotechnique
2
, no. 
3
(June):
225
232
. https://doi.org/10.1680/geot.1951.2.3.225
31.
Lings
,
M. L.
and
Dietz
M. S.
.
2005
. “
The Peak Strength of Sand-Steel Interfaces and the Role of Dilation
.”
Soils and Foundations
45
, no. 
6
:
1
14
. https://doi.org/10.3208/sandf.45.1
32.
Medapati
,
R. S.
,
Kreidl
O. P.
,
MacLaughlin
M.
,
Hudyma
N.
, and
Harris
A.
.
2013
. “
Quantifying Surface Roughness of Weathered Rock– Examples from Granite and Limestone
.” In
GeoCongress 2013: Stability and Performance of Slopes and Embankments III
,
120
128
.
Reston, VA
:
American Society of Civil Engineers
.
33.
NextEngine. n.d. “
NextEngine 3D Laser Scanner
.” NextEngine, Inc. https://perma.cc/TA5D–P2HC
34.
Nordlund
,
R. L.
n.d. “
Point Bearing and Shaft Friction of Piles in Sand
.” Paper presented at the Fifth Annual Short Course on the Fundamentals of Deep Foundation Design, Rolla, MO, 1979.
35.
Oglesby
,
J.
,
Hudyma
N.
,
Brown
S.
,
Bliss
A.
, and
Harris
A.
.
2017
. “
Development and Assessment of a Photogrammetry System for Rock Specimen Surface Characterization
.” In
IEEE SoutheastCon 2017
,
1
5
.
Piscataway, NJ
:
Institute of Electrical and Electronics Engineers
.
36.
O’Rourke
,
T. D.
,
Druschel
S. J.
, and
Netravali
A. N.
.
1990
. “
Shear Strength Characteristics of Sand–Polymer Interfaces
.”
Journal of Geotechnical Engineering
116
, no. 
3
(March):
451
469
. https://doi.org/10.1061/(ASCE)0733-9410(1990)116:3(451)
37.
Potyondy
,
J. G.
1961
. “
Skin Friction between Various Soils and Construction Materials
.”
Géotechnique
11
, no. 
4
(December):
339
353
. https://doi.org/10.1680/geot.1961.11.4.339
38.
Rausche
,
F.
,
Goble
G. G.
, and
Likins
G. E.
 Jr
.
1985
. “
Dynamic Determination of Pile Capacity
.”
Journal of Geotechnical Engineering
111
, no. 
3
(March):
367
383
. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:3(367)
39.
Rauthause
,
M.
Frictional Response of Some Sand–Timber Pile Interfaces
.” Master’s thesis,
Oregon State University
,
2017
.
40.
Rowe
,
P. W.
1962
. “
The Stress–Dilatancy Relation for Static Equilibrium of an Assembly of Particles in Contact
.”
Proceedings of the Royal Society A
269
, no. 
1339
(October):
500
527
. https://doi.org/10.1098/rspa.1962.0193
41.
Shibuya
,
S.
and
Hight
D. W.
.
1987
. “
A Bounding Surface for Granular Materials
.”
Soils and Foundations
27
, no. 
4
:
123
136
. https://doi.org/10.3208/sandf1972.27.4_123
42.
Stark
,
T. D.
,
Williamson
T. A.
, and
Eid
H. T.
.
1996
. “
HDPE Geomembrane/Geotextile Interface Shear Strength
.”
Journal of Geotechnical Engineering
122
, no. 
3
(March):
197
203
. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:3(197)
43.
Stuedlein
,
A. W.
and
Allen
M. L.
.
2018
. “
A Case History of Liquefaction Mitigation Using Driven Displacement Piles
.” In
Innovations in Ground Improvement for Soils, Pavements, and Subgrades, International Foundation Congress & Equipment Exposition (IFCEE), GSP No. 296
,
253
262
.
Reston, VA
:
American Society of Civil Engineers
.
44.
Stuedlein
,
A. W.
and
Gianella
T. N.
.
2017
. “
Effects of Driving Sequence and Spacing on Displacement-Pile Capacity
.”
Journal of Geotechnical and Geoenvironmental Engineering
143
, no. 
3
(March): 06016026. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001618
45.
Stuedlein
,
A. W.
,
Gianella
T. N.
, and
Canivan
G.
.
2016
. “
Densification of Granular Soils Using Conventional and Drained Timber Displacement Piles
.”
Journal of Geotechnical and Geoenvironmental Engineering
142
, no. 
12
(December): 04016075. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001554
46.
Stuedlein
,
A. W.
,
Kramer
S. L.
,
Arduino
P.
, and
Holtz
R. D.
.
2012
. “
Geotechnical Characterization and Random Field Modeling of Desiccated Clay
.”
Journal of Geotechnical and Geoenvironmental Engineering
138
, no. 
11
(November):
1301
1313
. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000723
47.
Subba Rao
,
K. S.
,
Allam
M. M.
, and
Robinson
R. G.
.
1998
. “
Interfacial Friction between Sands and Solid Surfaces
.”
Proceedings of the Institution of Civil Engineers– Geotechnical Engineering
131
, no. 
2
(April):
75
82
. https://doi.org/10.1680/igeng.1998.30112
48.
UAMA.
2016
.
American National Standard for Grading of Certain Abrasive Grain on Coated Abrasive Material
, UAMA B74.18-2016.
Cleveland, OH
:
Unified Abrasives Manufacturers' Association
, approved November 1, 2016.
49.
Uesugi
,
M.
and
Kishida
H.
.
1986
a. “
Frictional Resistance at Yield between Dry Sand and Mild Steel
.”
Soils and Foundations
26
, no. 
4
:
139
149
. https://doi.org/10.3208/sandf1972.26.4_139
50.
Uesugi
,
M.
and
Kishida
H.
.
1986
b. “
Influential Factors of Friction between Steel and Dry Sands
.”
Soils and Foundations
26
, no. 
2
:
33
46
. https://doi.org/10.3208/sandf1972.26.2_33
51.
Wijewickreme
,
D.
,
Dabeet
A.
, and
Byrne
P.
.
2013
. “
Some Observations on the State of Stress in the Direct Simple Shear Test Using 3D Discrete Element Analysis
.”
Geotechnical Testing Journal
36
, no. 
2
(March):
292
299
. https://doi.org/10.1520/GTJ20120066
52.
Wilkinson
,
T. L.
1968
.
Strength Evaluation of Round Timber Piles, Research Paper FPL 101
.
Madison, WI
:
U.S. Department of Agriculture, Forest Service, Forest Products Laboratory
.
53.
Wood
,
D. M.
,
Drescher
A.
, and
Budhu
M.
.
1979
. “
On the Determination of Stress State in the Simple Shear Apparatus
.”
Geotechnical Testing Journal
2
, no. 
4
(December):
211
222
. https://doi.org/10.1520/GTJ10460J
54.
Yegian
,
M. K.
and
Lahlaf
A. M.
.
1992
. “
Dynamic Interface Shear Strength Properties of Geomembranes and Geotextiles
.”
Journal of Geotechnical Engineering
118
, no. 
5
(May):
760
779
. https://doi.org/10.1061/(ASCE)0733-9410(1992)118:5(760)
55.
Zhang
,
S.
2018
. “
High–Speed 3D Shape Measurement with Structured Light Methods: A Review
.”
Optics and Lasers in Engineering
106
(July):
119
131
. https://doi.org/10.1016/j.optlaseng.2018.02.017
This content is only available via PDF.
You do not currently have access to this content.