Abstract

The rapid evolution of three-dimensional (3-D) printing has sparked interest for possible applications in geotechnical research. This article investigates the use of 3-D printing to create an artificial granular medium that reproduces the morphological characteristics of a natural sand. Initially, individual particle geometries are captured from the reference sand using microcomputed tomography (μCT) scanning. Subsequently, their capacity to represent the morphology of the original medium is assessed. An evaluation of 3-D-printing options ensues, leading to the selection of PolyJet as the currently preferential technology. Postprinting, μCT scanning reveals that only particles with a diameter of 2 mm or larger can be reliably reproduced using PolyJet. Finally, 3-D-printed media are assessed for their performance in possible geotechnical applications by examining their hydraulic conductivity using a constant head permeameter and their shear response using drained triaxial compression tests.

References

1.
Adamidis
,
O.
and
Madabhushi
G. S. P.
.
2015
. “
Use of Viscous Pore Fluids in Dynamic Centrifuge Modelling
.”
International Journal of Physical Modelling in Geotechnics
15
, no. 
3
(September):
141
149
. https://doi.org/10.1680/jphmg.14.00022
2.
Al-Raoush
,
R.
2007
. “
Microstructure Characterization of Granular Materials
.”
Physica A: Statistical Mechanics and Its Applications
377
, no. 
2
(April):
545
558
. https://doi.org/10.1016/j.physa.2006.11.090
3.
Alshibli
,
K. A.
,
Druckrey
A. M.
,
Al-Raoush
R. I.
,
Weiskittel
T.
, and
Lavrik
N. V.
.
2015
. “
Quantifying Morphology of Sands Using 3D Imaging
.”
Journal of Materials in Civil Engineering
27
, no. 
10
(October): 04014275. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001246
4.
Altuhafi
,
F.
,
O’Sullivan
C.
, and
Cavarretta
I.
.
2013
. “
Analysis of an Image-Based Method to Quantify the Size and Shape of Sand Particles
.”
Journal of Geotechnical and Geoenvironmental Engineering
139
, no. 
8
(August):
1290
1307
. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000855
5.
Arenson
,
L. U.
and
Springman
S. M.
.
2005
. “
Triaxial Constant Stress and Constant Strain Rate Tests on Ice-Rich Permafrost Samples
.”
Canadian Geotechnical Journal
42
, no. 
2
(April):
412
430
. https://doi.org/10.1139/t04-111
6.
ASTM International.
2006
.
Standard Test Method for Permeability of Granular Soils (Constant Head)
(Withdrawn). ASTM D2434-68(2006).
West Conshohocken, PA
:
ASTM International
, 2015. https://doi.org/10.1520/D2434-68R06
7.
ASTM International.
2011
.
Method for Consolidated Drained Triaxial Compression Test for Soils
. ASTM D7181–11.
West Conshohocken, PA
:
ASTM International
, approved July 1, 2011. https://doi.org/10.1520/D7181-11
8.
Barrett
,
P. J.
1980
. “
The Shape of Rock Particle, a Critical Review
.”
Sedimentology
27
, no. 
3
(June):
291
303
. https://doi.org/10.1111/j.1365-3091.1980.tb01179.x
9.
Bernhardt
,
M. L.
,
Biscontin
G.
, and
O’Sullivan
C.
.
2016
. “
Experimental Validation Study of 3D Direct Simple Shear DEM Simulations
.”
Soils and Foundations
56
, no. 
3
(June):
336
347
. https://doi.org/10.1016/j.sandf.2016.04.002
10.
Bowman
,
E. T.
,
Soga
K.
, and
Drummond
W.
.
2001
. “
Particle Shape Characterisation Using Fourier Descriptor Analysis
.”
Géotechnique
51
, no. 
6
(August):
545
554
. https://doi.org/10.1680/geot.51.6.545.40465
11.
Carman
,
P. C.
1956
.
Flow of Gases through Porous Media
.
New York
:
Academic Press
.
12.
Carrier
,
W. D.
, III.
2003
. “
Goodbye, Hazen; Hello, Kozeny-Carman
.”
Journal of Geotechnical and Geoenvironmental Engineering
129
, no. 
11
(November):
1054
1056
. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:11(1054)
13.
Cavarretta
,
I.
The Influence of Particle Characteristics on the Engineering Behaviour of Granular Materials
.” PhD diss.,
Imperial College London
,
2009
.
14.
Dal Ferro
,
N.
and
Morari
F.
.
2015
. “
From Real Soils to 3D-Printed Soils: Reproduction of Complex Pore Network at the Real Size in a Silty-Loam Soil
.”
Soil Science Society of America Journal
79
, no. 
4
(July–August):
1008
1017
. https://doi.org/10.2136/sssaj2015.03.0097
15.
Desrues
,
J.
,
Viggiani
G.
, and
Bésuelle
P.
, eds.
2006
.
Advances in X-Ray Tomography for Geomaterials
.
London
:
ISTE Ltd
. https://doi.org/10.1002/9780470612187
16.
Fonseca
,
J.
,
O’Sullivan
C.
,
Coop
M. R.
, and
Lee
P. D.
.
2012
. “
Non-Invasive Characterization of Particle Morphology of Natural Sands
.”
Soils and Foundations
52
, no. 
4
(August):
712
722
. https://doi.org/10.1016/j.sandf.2012.07.011
17.
Garboczi
,
E. J.
,
Riding
K. A.
, and
Mirzahosseini
M.
.
2017
. “
Particle Shape Effects on Particle Size Measurement for Crushed Waste Glass
.”
Advnced Powder Technology
28
, no. 
2
(February):
648
657
. https://doi.org/10.1016/j.apt.2016.12.002
18.
Hanaor
,
D. A. H.
,
Gan
Y.
,
Revay
M.
,
Airey
D. W.
, and
Einav
I.
.
2016
. “
3D Printable Geomaterials
.”
Géotechnique
66
, no. 
4
(April):
323
332
. https://doi.org/10.1680/jgeot.15.P.034
19.
Hazen
,
A.
1892
. “
Some Physical Properties of Sands and Gravels, with Special Reference to Their Use in Filtration
.” In
24th Annual Report of the State Board of Health of Massachusetts, Public Document No. 34
,
539
556
.
Boston, MA
:
Wright & Potter Printing Co
.
20.
Kondo
,
A.
,
Matsumura
S.
,
Mizutani
T.
, and
Kohama
E.
.
2017
. “
Reproduction of Discrete Element Model by 3D Printing and Its Experimental Validation on Permeability Issue
.” In
Advances in Laboratory Testing and Modelling of Soils and Shales (ATMSS)
, edited by
Ferrari
A.
and
Laloui
L.
,
517
524
.
Cham, Switzerland
:
Springer
. https://doi.org/10.1007/978-3-319-52773-4_62
21.
Kozeny
,
J.
1927
. “
Ueber kapillare Leitung des Wassers im Boden
.”
Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften
136
, no. 
2a
:
271
306
.
22.
Matsumura
,
S.
,
Kobayashi
T.
,
Mizutani
T.
, and
Bathurst
R. J.
.
2017
. “
Manufacture of Bonded Granular Soil Using X-Ray CT Scanning and 3D Printing
.”
Geotechnical Testing Journal
40
, no. 
6
(November):
1000
1010
. https://doi.org/10.1520/GTJ20160273
23.
Miskin
,
M. Z.
and
Jaeger
H. M.
.
2013
. “
Adapting Granular Materials through Artificial Evolution
.”
Nature Materials
12
, no. 
4
(April):
326
331
. https://doi.org/10.1038/nmat3543
24.
Powers
,
M. C.
1953
. “
A New Roundness Scale for Sedimentary Particles
.”
Journal of Sedimentary Research
23
, no. 
2
(June):
117
119
. https://doi.org/10.1306/D4269567-2B26-11D7-8648000102C1865D
25.
Schanz
,
T.
and
Vermeer
P. A.
.
1996
. “
Angles of Friction and Dilatancy of Sand
.”
Géotechnique
46
, no. 
1
(March):
145
151
. https://doi.org/10.1680/geot.1996.46.1.145
26.
Stauber
,
M.
and
Müller
R.
.
2008
. “
Micro-Computed Tomography: A Method for the Non-Destructive Evaluation of the Three-Dimensional Structure of Biological Specimens
.” In
Osteoporosis
, edited by
Westendorf
J. J.
,
273
292
. Totowa, NJ:
Humana Press
. https://doi.org/10.1007/978-1-59745-104-8_19
27.
Stratasys
.
2018
.
High Temperature Heat-Resistant PolyJet Material. Technical Data Sheet
.
Eden Prairie, MN
:
Stratasys
.
28.
Wadell
,
H.
1932
. “
Volume, Shape, and Roundness of Rock Particles
.”
Journal of Geology
40
, no. 
5
(July–August):
443
451
. http://www.jstor.org/stable/30058012
29.
Wood
,
D. M.
2009
.
Soil Mechanics: A One-Dimensional Introduction
.
Cambridge, UK
:
Cambridge University Press
.
This content is only available via PDF.
You do not currently have access to this content.