Abstract

The peak and residual interface shear strengths for a variety of normally consolidated soils were measured using a torsional ring shear apparatus modified to suit soil and interface testing under the undrained condition, which is usually prevalent at soil–marine pipeline interfaces. Five solid surfaces with different roughnesses were utilized in this single-stage shear testing program. Tests were conducted at normal stresses in the intermediate range that are mobilized on soil–pipeline interfaces under near-shore conditions. For comparison, drained peak and residual shear strengths of a representative interface were also measured using a different version of the torsional ring shear apparatus. Based on the analyses and interpretations of the test results, a simple equation is introduced to estimate the undrained peak and residual interface efficiencies as a function of the solid surface roughness. The analyses also revealed that the normalized undrained peak and residual shear strengths of the soils and interfaces are insensitive to the change in soil plasticity. The ratios between these undrained strengths and the corresponding drained strengths decrease with decreasing soil plasticity and increasing interface roughness. Recommendations for the initial assessment of the pipe-soil shearing resistance and the preliminary stability analyses of near-shore marine pipelines are suggested based on the findings of this study.

References

1.
ASTM International.
1999
.
Standard Test Method for Torsional Ring Shear Test to Determine Drained Residual Shear Strength of Cohesive Soils
. ASTM D6467(1999).
West Conshohocken, PA
:
ASTM International
, 1999. https://doi.org/10.1520/D6467-13E01
2.
ASTM International.
2000
.
Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System)
. ASTM D2487(2000).
West Conshohocken, PA
:
ASTM International
, 2000. https://doi.org/10.1520/D2487-17
3.
Bromhead
,
E. N.
1979
. “
A Simple Ring Shear Apparatus
.”
Ground Engineering
12
, no. 5 (July):
40
44
.
4.
Bjerrum
,
L.
and
Landva
A.
.
1966
. “
Direct Simple Shear Test on a Norwegian Quick Clay
.”
Géotechnique
16
, no. 
1
(March):
1
20
. https://doi.org/10.1680/geot.1966.16.1.1
5.
Boukpeti
,
N.
and
White
D. J.
.
2017
. “
Interface Shear Box Tests for Assessing Axial Pipe-Soil Resistance
.”
Géotechnique
67
, no. 
1
(January):
18
30
. https://doi.org/10.1680/jgeot.15.P.112
6.
Colliat
,
J.-L.
,
Dendani
H.
,
Puech
A.
, and
Nauroy
J.-F.
.
2011
. “
Gulf of Guinea Deepwater Sediments: Geotechnical Properties, Design Issues and Installation Experiences
.” In
Proceedings of the Second International Symposium on Frontiers in Offshore Geotechnics (ISFOG)
,
59
86
.
Milton Park
:
Taylor and Francis Group
.
7.
Dyvik
,
R.
,
Berre
T.
,
Lacasse
S.
, and
Raadim
B.
.
1987
. “
Comparison of Truly Undrained and Constant Volume Direct Simple Shear Tests
.”
Géotechnique
37
, no. 
1
(March):
3
10
. https://doi.org/10.1680/geot.1987.37.1.3
8.
Eid
,
H. T.
,
Amarasinghe
R. S.
,
Rabie
K. H.
, and
Wijewickreme
D.
.
2015
. “
Residual Shear Strength of Fine-Grained Soils and Soil-Solid Interfaces at Low Effective Normal Stresses
.”
Canadian Geotechnical Journal
52
, no. 
2
(February):
198
210
. https://doi.org/10.1139/cgj-2014-0019
9.
Eid
,
H. T.
,
Rabie
K. H.
, and
Wijewickreme
D.
.
2016
. “
Drained Residual Shear Strength at Effective Normal Stresses Relevant to Soil Slope Stability Analyses
.”
Engineering Geology
204
(April):
94
107
. https://doi.org/10.1016/j.enggeo.2016.02.003
10.
Eid
,
H. T.
and
Rabie
K. H.
.
2017
. “
Fully Softened Shear Strength for Soil Slope Stability Analyses
.”
International Journal of Geomechanics
17
, no. 
1
(January): 04016023:10p. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000651
11.
Farshad
,
F. F.
,
Pesacreta
T. C.
,
Garber
J. D.
, and
Bikki
S. R.
.
2001
. “
A Comparison of Surface Roughness of Pipes as Measured by Two Profilometers and Atomic Force Microscopy
.”
Scanning
23
, no. 
4
(July/August):
241
248
. https://doi.org/10.1002/sca.4950230404
12.
Fang
,
Y. S.
,
Chen
T. J.
,
Holtz
R. D.
, and
Lee
W. F.
.
2004
. “
Reduction of Boundary Friction in Model Tests
.”
Geotechnical Testing Journal
27
, no. 
1
(January):
3
12
. https://doi.org/10.1520/GTJ10812
13.
Frost
,
J. D.
,
DeJong
J. T.
, and
Recalde
M.
.
2002
. “
Shear Failure Behavior of Granular-Continuum Interfaces
.”
Engineering Fracture Mechanics
69
, no. 
17
(November):
2029
2048
. https://doi.org/10.1016/S0013-7944(02)00075-9
14.
Frost
,
J. D.
,
Hebeler
G. L.
,
Evans
T. M.
, and
DeJong
J. T.
.
2004
. “
Interface Behavior of Granular Soils
.” In
Ninth Biennial Conference on Engineering, Construction, and Operations in Challenging Environments
,
65
72
.
Reston, VA
:
American Society of Civil Engineering
.
15.
Ganesan
,
S.
,
Kuo
M.
, and
Bolton
M.
.
2014
. “
Influence on Pipeline Interface Friction Measured in Direct Shear Tests
.”
Geotechnical Testing Journal
37
, no. 
1
(January):
94
106
. https://doi.org/10.1520/GTJ20130008
16.
Gibson
,
R. E.
and
Henkel
D. J.
.
1954
. “
Influence of Duration of Tests at Constant Rate of Strain on Measured Drained Strength
.”
Géotechnique
4
, no. 
1
(March):
6
15
. https://doi.org/10.1680/geot.1954.4.1.6
17.
Gratchev
,
I. B.
and
Sassa
K.
.
2015
. “
Shear Strength of Clay at Different Shear Rates
.”
Journal of Geotechnical and Geoenvironmental Engineering
141
, no. 
5
(May): 06015002:3p. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001297
18.
Hammoud
,
F.
and
Boumekik
A.
.
2006
. “
Experimental Study of the Behaviour of Interfacial Shearing between Cohesive Soils and Solid Materials at Large Displacement
.”
Asian Journal of Civil Engineering
7
, no. 
1
(February):
63
80
.
19.
Han
,
F.
,
Ganju
E.
,
Salgado
R.
, and
Prezzi
M.
.
2018
. “
Effect of Interface Roughness, Particle Geometry, and Gradation on the Sand-Steel Interface Friction Angle
.”
Journal of Geotechnical and Geoenvironmental Engineering
144
, no. 
12
(December): 04018096. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001990
20.
Hebeler
,
G. L.
,
Martinez
A.
, and
Frost
J. D.
.
2016
. “
Shear Zone Evaluation of Granular Soils in Contact with Conventional and Textured CPT Friction Sleeves
.”
KSCE Journal of Civil Engineering
20
, no. 
4
(May):1267–1282. https://doi.org/10.1007/s12205-015-0767-6
21.
Hill
,
A. J.
and
Jacob
H.
.
2008
. “
In-Situ Measurement of Pipe-Soil Interaction in Deep Water
.” In
Proceedings of The Offshore Technology Conference (OTC)
, Paper No. OCT 19528.
Houston, TX
:
Offshore Technology Conference
.
22.
Hill
,
A. J.
,
White
D. J.
,
Bruton
D. A. S.
,
Langford
T.
,
Meyer
V.
,
Jewell
R.
, and
Ballard
J.-C.
.
2012
. “
A New Framework for Axial Pipe-Soil Resistance, Illustrated by a Range of Marine Clay Datasets
.” In
Proceedings of the Seventh International Offshore Site Investigation and Geotechnics Conference
,
367
377
.
London
:
Society for Underwater Technology (SUT)
.
23.
Idriss
,
I. M.
1985
. “
Evaluating Seismic Risk in Engineering Practice
.” In
Proceedings of the Eleventh Conference on Soil Mechanics and Foundation Engineering
, Vol. 
1
,
255
320
.
Rotterdam
:
Balkema Publishers
.
24.
Jardine
,
R. J.
,
Chow
F. C.
,
Overy
R.
, and
Standing
J. R.
.
2005
.
ICP Design Methods for Driven Piles in Sand and Clays
.
London
,
United Kingdom: Thomas Telford
.
25.
Jewell
,
R. J.
and
Ballard
J.-C.
.
2011
. “
Axial Pipe-Soil Interaction: A Suggested Framework
.”
Proceedings of the Offshore Technology Conference
(OTC), Paper No. OTC 22010.
Houston, TX
:
Offshore Technology Conference
.
26.
Kuo
,
M.
and
Bolton
M.
.
2013
. “
The Nature and Origin of Deep Ocean Clay Crust from the Gulf of Guinea
.”
Géotechnique
63
, no. 
6
(May):
500
509
. https://doi.org/10.1680/geot.10.P.012
27.
Kuo
,
M.
and
Bolton
M.
.
2014
. “
Shear Tests on Deep-Ocean Clay Crust from the Gulf of Guinea
.”
Géotechnique
64
, no. 
4
(March): pp
249
259
. https://doi.org/10.1680/geot.13.P.020
28.
Kuo
,
M. Y.-H.
,
Bolton
M. D.
,
Hill
A. J.
, and
Rattley
M.
.
2010
. “
New Evidence for the Origin and Behaviour of Deep Ocean ‘Crusts’
.” In
Proceedings of the Second International Symposium on Frontiers in Offshore Geotechnics (ISFOG)
,
365
370
.
Rotterdam
:
Balkema Publishers
.
29.
Ladd
,
C. C.
and
Edgers
L.
.
1972
.
Consolidated-Undrained Direct-Simple Shear Tests on Saturated Clays, MIT Research Report R72-82
, 245.
Cambridge, MA
:
Massachusetts Institute of Technology
.
30.
Ladd
,
C. C.
,
Foott
K.
,
Ishikara
K.
,
Poulos
H. G.
, and
Schlosser
F.
.
1977
. “
Stress-Deformation and Strength Characteristics
.” In
Proceedings of the Ninth International Conference on Soil Mechanics and Foundation Engineering
, Vol. 
2
,
421
476
.
Tokyo
:
Japanese Society of Soil Mechanics and Foundation Engineering
.
31.
Lejane
,
B. M.
and
Jardine
R. J.
.
1992
. “
Residual Strength Characteristics of Bothkennar Clay
.”
Géotechnique
42
, no. 
2
(June):
363
367
. https://doi.org/10.1680/geot.1992.42.2.363
32.
Lemos
,
L. J. L.
and
Vaughan
P. R.
.
2000
. “
Clay-Interface Shear Resistance
.”
Géotechnique
50
, no. 
1
(February):
55
64
. https://doi.org/10.1680/geot.2000.50.1.55
33.
Lupini
,
J. F.
,
Skinner
A. E.
, and
Vaughan
P. R.
.
1981
. “
The Drained Residual Strength of Cohesive Soils
.”
Géotechnique
31
, no. 
2
(June):
181
213
. https://doi.org/10.1680/geot.1981.31.2.181
34.
Maksimovic
,
M.
1989
. “
Nonlinear Failure Envelope for Soils
.”
Journal of Geotechnical Engineering
115
, no. 
4
(April):
581
586
. https://doi.org/10.1061/(ASCE)0733-9410(1989)115:4(581)
35.
Martinez
,
A.
,
Frost
D.
, and
Hebeler
G. L.
.
2015
. “
Experimental Study of Shear Zones Formed at Sands/Steel Interface in Axial and Torsional Axisymmetric Tests
.”
Geotechnical Testing Journal
38
, no. 
4
(July):
409
426
. https://doi.org/10.1520/GTJ20140266
36.
Meehan
,
C. L.
,
Brandon
T. L.
, and
Duncan
M. J.
.
2008
. “
Measuring Fast Shear Strengths along Slickensided Surfaces in the Bromhead Ring Shear
.”
Geotechnical Testing Journal
31
, no. 
3
(May):
239
242
. https://doi.org/10.1520/GTJ101325
37.
Mesri
,
G.
1975
. “
New Design Procedure for Stability of Soft Clays. [Discussion.]
.”
Journal of the Geotechnical Engineering Division
101
, no. 
4
(April):
409
412
.
38.
Mesri
,
G.
1989
. “
A Reevaluation of Su(mob) = 0.22σp Using Laboratory Shear Tests
.”
Canadian Geotechnical Journal
26
, no. 
1
(February):
162
194
. https://doi.org/10.1139/t89-017
39.
Mesri
,
G.
,
Rokhsar
A.
, and
Bohor
B. F.
.
1975
. “
Composition and Compressibility of Typical Samples of Mexico City Clay
.”
Géotechnique
25
, no. 
3
(September):
527
554
. https://doi.org/10.1680/geot.1975.25.3.527
40.
Najjar
,
S. S.
,
Gilbert
R. B.
,
Liedtke
E. A.
, and
McCarron
B.
.
2003
. “
Tilt Table Test for Interface Shear Resistance between Flowlines and Soils
.” In
Proceedings of the 22nd International Conference on Offshore Mechanics and Arctic Engineering-OMAE
, Vol. 
3
,
859
866
.
New York, NY
:
American Society of Mechanical Enigneers
.
41.
Najjar
,
S. S.
,
Gilbert
R. B.
,
Liedtke
E.
,
McCarron
B.
, and
Young
A. G.
.
2007
. “
Residual Shear Strength for Interfaces between Pipelines and Clays at Low Effective Normal Stresses
.”
Journal of Geotechnical and Geoenvironmental Engineering
133
, no. 
6
(June):
695
706
. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:6(695)
42.
Oliphant
,
J.
and
Maconochie
A.
.
2007
. “
The Axial Resistance of Buried and Unburied Pipelines
.” In
Proceedings of the Sixth International Offshore Site Investigation and Geotechnics Conference
,
125
132
.
London
:
Society for Underwater Technology (SUT)
.
43.
Paikowsky
,
S. G.
,
Player
C. M.
, and
Connors
P. J.
.
1995
. “
A Dual Interface Apparatus for Testing Unrestricted Friction of Soil along Solid Surfaces
.”
Geotechnical Testing Journal
18
, no. 
2
(June):
168
193
. https://doi.org/10.1520/GTJ10320J
44.
Pederson
,
R. C.
,
Olson
R. E.
, and
Rauch
A. F.
.
2003
. “
Shear and Interface Strength of Clay at Very Low Effective Stress
.”
Geotechnical Testing Journal
26
, no. 
1
(March):
71
78
. https://doi.org/10.1520/GTJ11104J
45.
Ramsey
,
N.
,
Jardine
R. J.
,
Lejane
B. M.
, and
Ridley
A. M.
.
1998
. “
A Review of Soil-Steel Interface Testing with the Ring-Shear Apparatus
.” In
Proceedings of the Offshore Site Investigation and Foundation Behaviour Conference
,
237
258
.
London
:
Society for Underwater Technology (SUT)
.
46.
Saldivar
,
E. E.
and
Jardine
R. J.
.
2005
. “
Application of an Effective Stress Design Method to Concrete Pile Driven in Mexico City Clay
.”
Canadian Geotechnical Journal
42
, no. 
6
(December):
1495
1508
. https://doi.org/10.1139/t05-062
47.
Skempton
,
A. W.
1985
. “
Residual Strength of Clays in Landslides, Folded Strata and the Laboratory
.”
Géotechnique
35
, no. 
1
(March):
3
18
. https://doi.org/10.1680/geot.1985.35.1.3
48.
Stark
,
T. D.
and
Eid
H. T.
.
1993
. “
Modified Bromhead Ring Shear Apparatus
,”
Geotechnical Testing Journal
16
, no. 
1
(March):
100
107
. https://doi.org/10.1520/GTJ10272J
49.
Stark
,
T. D.
and
Eid
H. T.
.
1994
. “
Drained Residual Strength of Cohesive Soils
.”
Journal of Geotechnical Engineering
120
, no. 
5
(May):
856
871
. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:5(856)
50.
Stark
,
T. D.
and
Eid
H. T.
.
1997
. “
Slope Stability Analyses in Stiff Fissured Clays
.”
Journal of Geotechnical and Geoenvironmental Engineering
123
, no. 
4
(April):
335
343
. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:4(335)
51.
Stark
,
T. D.
and
Contreras
I. A.
.
1998
. “
Fourth Avenue Landslide during 1964 Alaskan Earthquake
.”
Journal of Geotechnical and Geoenvironmental Engineering
124
, no. 
2
(February):
99
109
. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:2(99)
52.
Steenfelt
,
J. S.
1993
. “
Sliding Resistance for Foundation on Clay Till
.” In
Predictive Soil Mechanics: Proceedings of Worth Memorial Symposium
,
664
684
.
London
:
Thomas Telford
.
53.
Subba Rao
,
K. S.
,
Allam
M. M.
, and
Robinson
R. G.
.
1998
. “
Interfacial Friction between Sands and Solid Surfaces
.”
Proceedings of the Institution of Civil Engineers - Geotechnical Engineering
131
, no. 
2
(April):
75
82
. https://doi.org/10.1680/igeng.1998.30112
54.
Subba Rao
,
K. S.
,
Allam
M. M.
, and
Robinson
R. G.
.
2000
. “
Drained Shear Strength of Fine-Grained Soil-Solid Surface Interfaces
.”
Proceedings of the Institution of Civil Engineers - Geotechnical Engineering
143
, no. 
2
(April):
75
81
. https://doi.org/10.1680/geng.2000.143.2.75
55.
Taylor
,
D. W.
1952
. “
A Direct Shear Test with Drainage Control
.” In
Symposium on Direct Shear Testing of Soils, ASTM STP131
, edited by
Tschebotarioff
G.
,
63
74
.
West Conshohocken, PA
:
ASTM International
. https://doi.org/10.1520/STP131-EB
56.
Tika-Vassilikos
,
T.
1991
. “
The Clay-on-Steel Ring Shear Tests and Their Implications for Displacement Piles
.”
Geotechnical Testing Journal
14
, no. 
4
(December):
457
463
. https://doi.org/10.1520/GTJ10214J
57.
Tika
,
T. E.
,
Vaughan
P. R.
, and
Lemos
L. J. L.
.
1996
. “
Fast Shearing of Pre-Existing Shear Zone in Soil
.”
Géotechnique
46
, no. 
2
(June):
197
233
. https://doi.org/10.1680/geot.1996.46.2.197
58.
Tsubakihara
,
Y.
and
Kishida
H.
.
1993
. “
Friction Behaviour between Normally Consolidated Clay and Steel by Two Direct Shear Type Apparatuses
.”
Soils and Foundations
33
, no. 
2
(June):
1
13
. https://doi.org/10.3208/sandf1972.33.2_1
59.
Tsubakihara
,
Y.
,
Kishida
H.
, and
Nishiyama
T.
.
1993
. “
Friction between Cohesive Soil and Steel
.”
Soils and Foundations
33
, no. 
2
(June):
145
156
. https://doi.org/10.3208/sandf1972.33.2_145
60.
Uesugi
,
M.
and
Kishida
H.
.
1986
. “
Frictional Resistance at Yield between Dry Sand and Mild Steel
.”
Soils and Foundations
26
, no. 
4
(December):
139
149
. https://doi.org/10.3208/sandf1972.26.4_139
61.
Wesley
,
L. D.
1977
. “
Shear Strength Properties of Halloysite and Allophane Clays in Java, Indonesia
.”
Géotechnique
27
, no. 
2
(June):
125
136
. https://doi.org/10.1680/geot.1977.27.2.125
62.
Wesley
,
L. D.
1992
. “
Some Residual Strength Measurements on New Zealand Soils
.” In
Proceedings of the Sixth Australia-New Zealand Conference on Geomechanics
,
381
385
.
Wellington
:
New Zealand Geotechnical Society
.
63.
Westgate
,
Z. J.
,
White
D. J.
, and
Savazzi
M.
.
2018
. “
Experience with Interface Shear Box Testing for Axial Pipe-Soil Interaction Assessment on Soft Clay
.” In
Proceedings of The Offshore Technology Conference (OTC)
, Paper No. OTC 28671-MS.
Houston, TX
:
Offshore Technology Conference
.
64.
White
,
D. J.
and
Cathie
D. N.
.
2011
. “
Geotechnics for Subsea Pipelines
.” In
Proceedings of the Second International Symposium on Frontiers in Offshore Geotechnics
,
87
123
.
Boca Raton, FL
:
CRC Press
.
65.
White
,
D. J.
and
Randolph
M. F.
.
2007
. “
Seabed Characterization and Models for Pipeline-Soil Interaction
.” In
Proceedings of the Seventeenth International Offshore and Polar Engineering Conference
,
758
769
.
Mountain View, CA
:
International Society of Offshore and Polar Engineers
.
66.
White
,
D. J.
,
Bolton
M. D.
,
Ganesan
S. A.
,
Bruton
D.
,
Ballard
J.-C.
, and
Langford
T.
.
2011
. “
SAFEBUCK JIP: Observations from Model Testing of Axial Pipe-Soil Interaction on Soft Natural Clays
.” In
Proceedings of The Offshore Technology Conference (OTC)
, Paper No. OCT 21249.
Houston, TX
:
Offshore Technology Conference
.
67.
White
,
D. J.
,
Campbell
M. E.
,
Boylan
N. P.
, and
Bransby
M. F.
.
2012
. “
A New Framework for Axial Pipe-Soil Interaction, Illustrated by Shear Box Tests on Carbonate Soils
.” In
Proceedings of the Seventh International Offshore Site Investigation and Geotechnics Conference
,
379
387
.
London
:
Society for Underwater Technology (SUT)
.
This content is only available via PDF.
You do not currently have access to this content.