Abstract

Previous studies on the effects of cyclic loading on the strength and deformability behavior of rocks under uniaxial conditions, i.e., strength damage together with the degradation of rocks’ mechanical properties, have solely taken into account the postpeak stress strain regime. Nevertheless, rock may experience cyclic loading history in the postpeak regime as well. In this study, the effects of cyclic loading on the deformational characteristics of both the nonlocalized damage zone (NLDZ) and the localized damage zone (LDZ) of rock in the postpeak regime are investigated. A series of postpeak damage-controlled tests were carried out on three different rock types, including sandstone, limestone, and granite specimens. Three-dimensional digital image correlation was implemented to measure the strain development in the surface of the specimens. Strain localization was found to be more significant in the lateral direction and less occurrent in the axial direction. In addition, it was observed that the material located in the NLDZ experiences much less damage in contrast to material located in the LDZ. Both large irreversible strain accumulation and Young’s modulus degradation were found to take place progressively in the LDZ, initially occurring at a lower rate and then faster as the number of loading-unloading cycles increased. In this regard, the extent of irreversible deformation and stiffness degradation in the LDZ is considered to be a major contributor to the global loss of strength of the entire specimen.

References

1.
Bischoff
,
P. H.
and
Perry
,
S. H.
,
1991
, “
Compressive Behaviour of Concrete at High Strain Rates
,”
Mater. Struct.
, Vol. 
24
, No. 
6
, pp. 
425
450
, https://doi.org/10.1007/BF02472016
2.
Brown
,
E. T.
,
1981
,
Rock Characterization Testing and Monitoring—ISRM Suggested Methods
,
Pergamon Press
,
Oxford, UK
, 211p.
3.
Eberhardt
,
E.
,
Stead
,
D.
, and
Stimpson
,
B.
,
1999
, “
Quantifying Progressive Pre-Peak Brittle Fracture Damage in Rock during Uniaxial Compression
,”
Int. J. Rock Mech. Min. Sci.
, Vol. 
36
, No. 
3
, pp. 
361
380
, https://doi.org/10.1016/S0148-9062(99)00019-4
4.
Eberhardt
,
E.
,
Stead
,
D.
,
Stimpson
,
B.
, and
Read
,
R. S.
,
1998
, “
Identifying Crack Initiation and Propagation Thresholds in Brittle Rock
,”
Can. Geotech. J.
, Vol. 
35
, pp. 
222
233
, https://doi.org/10.1139/t97-091
5.
Fairhurst
,
C. E.
and
Hudson
,
J. A.
,
1999
, “
Draft ISRM Suggested Method for the Complete Stress-Strain Curve for Intact Rock in Uniaxial Compression
,”
Int. J. Rock Mech. Min. Sci.
, Vol. 
36
, pp. 
279
289
, https://doi.org/10.1016/S0148-9062(99)00006-6
6.
Hashiba
,
K.
,
Okubo
,
S.
, and
Fukui
,
K.
,
2006
, “
A New Testing Method for Investigating the Loading Rate Dependency of Peak and Residual Rock Strength
,”
Int. J. Rock Mech. Min. Sci.
, Vol. 
43
, No. 
6
, pp. 
894
904
, https://doi.org/10.1016/j.ijrmms.2005.12.005
7.
He
,
C.
,
Okubo
,
S.
, and
Nishimatsu
,
Y.
,
1990
, “
A Study of the Class II Behaviour of Rock
,”
Rock Mech. Rock Eng.
, Vol. 
23
, No. 
4
, pp. 
261
273
, https://doi.org/10.1007/BF01043307
8.
Heinz
,
S. R.
and
Wiggins
,
J. S.
,
2010
, “
Uniaxial Compression Analysis of Glassy Polymer Networks Using Digital Image Correlation
,”
Polym. Test.
, Vol. 
29
, No. 
8
, pp. 
925
932
, https://doi.org/10.1016/j.polymertesting.2010.08.001
9.
Horii
,
H.
and
Nemat-Nasser
,
S.
,
1986
, “
Brittle Failure in Compression: Splitting Faulting and Brittle-Ductile Transition
,”
Philos. Trans. R. Soc. London, Ser. A
, Vol. 
319
, No. 
1549
, pp. 
337
374
, https://doi.org/10.1098/rsta.1986.0101
10.
Hudson
,
J. A.
,
Brown
,
E. T.
, and
Fairhurst
,
C.
,
1971
, “
Optimizing the Control of Rock Failure in Servo-Controlled Laboratory Tests
,”
Rock Mech.
, Vol. 
3
, No. 
4
, pp. 
217
224
, https://doi.org/10.1007/BF01238181
11.
Liu
,
J.
,
Xie
,
H.
,
Hou
,
Z.
,
Yang
,
C.
, and
Chen
,
L.
,
2014
, “
Damage Evolution of Rock Salt under Cyclic Loading in Unixial Tests
,”
Acta Geotech.
, Vol. 
9
, No. 
1
, pp. 
153
160
, https://doi.org/10.1007/s11440-013-0236-5
12.
Markeset
,
G.
and
Hillerborg
,
A.
,
1995
, “
Softening of Concrete in Compression—Localization and Size Effects
,”
Cem. Concr. Res.
, Vol. 
25
, No. 
4
, pp. 
702
708
, https://doi.org/10.1016/0008-8846(95)00059-L
13.
Martin
,
C. D.
,
1997
, “
Seventeenth Canadian Geotechnical Colloquium: The Effect of Cohesion Loss and Stress Path on Brittle Rock Strength
,”
Can. Geotech. J.
, Vol. 
34
, No. 
5
, pp. 
698
725
, https://doi.org/10.1139/t97-030
14.
Martin
,
C.
and
Chandler
,
N.
,
1994
, “
The Progressive Fracture of Lac du Bonnet Granite
,”
Int. J. Rock Mech. Min. Sci. Geomech. Abstr.
, Vol. 
31
, No. 
6
, pp. 
643
659
, https://doi.org/10.1016/0148-9062(94)90005-1
15.
Martin
,
C. D.
and
Read
,
R. S.
,
1996
, “
AECL’s Mine-by Experiment: A Test Tunnel in Brittle Rock
,” presented at the
Second North American Rock Mechanics Symposium
, Montreal, Canada,
A. A. Balkema
,
Rotterdam, the Netherlands
, Vol. 
1
, pp. 
13
24
.
16.
Meng
,
Q.
,
Zhang
,
M.
,
Han
,
L.
,
Pu
,
H.
, and
Nie
,
T.
,
2016
, “
Effects of Acoustic Emission and Energy Evolution of Rock Specimens under the Uniaxial Cyclic Loading and Unloading Compression
,”
Rock Mech. Rock Eng.
, Vol. 
49
, No. 
10
, pp. 
3873
3886
, https://doi.org/10.1007/s00603-016-1077-y
17.
Munoz
,
H.
and
Taheri
,
A.
,
2017
, “
Local Damage and Progressive Localisation in Porous Sandstone during Cyclic Loading
,”
Rock Mech. Rock Eng.
, Vol. 
50
, No. 
12
, pp. 
3253
3259
, https://doi.org/10.1007/s00603-017-1298-8
18.
Munoz
,
H.
and
Taheri
,
A.
,
2017
, “
Specimen Aspect Ratio and Progressive Field Strain Development of Sandstone under Uniaxial Compression by Three-Dimensional Digital Image Correlation
,”
J. Rock Mech. Geotech. Eng.
, Vol. 
9
, No. 
4
, pp. 
599
610
, https://doi.org/10.1016/j.jrmge.2017.01.005
19.
Munoz
,
H.
,
Taheri
,
A.
, and
Chanda
,
E. K.
,
2016
, “
Fracture Energy-Based Brittleness Index Development and Brittleness Quantification by Pre-Peak Strength Parameters in Rock Uniaxial Compression
,”
Rock Mech. Rock Eng.
, Vol. 
49
, No. 
12
, pp. 
4587
4606
, https://doi.org/10.1007/s00603-016-1071-4
20.
Munoz
,
H.
,
Taheri
,
A.
, and
Chanda
,
E. K.
,
2016
, “
Pre-Peak and Post-Peak Rock Strain Characteristics during Uniaxial Compression by 3D Digital Image Correlation
,”
Rock Mech. Rock Eng.
, Vol. 
49
, No. 
7
, pp. 
2541
2554
, https://doi.org/10.1007/s00603-016-0935-y
21.
Okubo
,
S.
and
Nishimatsu
,
Y.
,
1985
, “
Uniaxial Compression Testing Using a Linear Combination of Stress and Strain as the Control Variable
,”
Int. J. Rock Mech. Min. Sci. Geomech. Abstr.
, Vol. 
22
, No. 
5
, pp. 
323
330
, https://doi.org/10.1016/0148-9062(85)92064-9
22.
Song
,
H.
,
Zhang
,
H.
,
Fu
,
D.
, and
Zhang
,
Q.
,
2016
, “
Experimental Analysis and Characterization of Damage Evolution in Rock under Cyclic Loading
,”
Int. J. Rock Mech. Min. Sci.
, Vol. 
88
, pp. 
157
164
.
23.
Sutton
,
M. A.
,
Orteu
,
J. J.
, and
Schreier
,
H.
,
2009
,
Image Correlation for Shape, Motion and Deformation Measurements
,
Springer
,
New York, NY
, 322p.
24.
Taheri
,
A.
,
Yfantidis
,
N.
,
Olivares
,
C. L.
,
Connelly
,
B. J.
, and
Bastian
,
T. J.
,
2016
, “
Experimental Study on Degradation of Mechanical Properties of Sandstone under Different Cyclic Loadings
,”
Geotech. Test. J.
, Vol. 
39
, No. 
4
, pp. 
673
687
, https://doi.org/10.1520/GTJ20150231
25.
Tarasov
,
B.
and
Potvin
,
Y.
,
2013
, “
Universal Criteria for Rock Brittleness Estimation under Triaxial Compression
,”
Int. J. Rock Mech. Min. Sci.
, Vol. 
59
, pp. 
57
69
, https://doi.org/10.1016/j.ijrmms.2012.12.011
26.
Tung
,
N. D.
and
Tue
,
N. V.
,
2015
, “
Post-Peak Behavior of Concrete Specimens Undergoing Deformation Localization in Uniaxial Compression
,”
Constr. Build. Mater.
, Vol. 
99
, pp. 
109
117
, https://doi.org/10.1016/j.conbuildmat.2015.09.013
27.
van Mier
,
J. G. M.
,
2008
, “
Framework for a Generalized Four-Stage Fracture Model of Cement-Based Materials
,”
Eng. Fract. Mech.
, Vol. 
75
, No. 
18
, pp. 
5072
5086
, https://doi.org/10.1016/j.engfracmech.2008.07.011
28.
Vasconcelos
,
G.
,
Lourenço
,
P.
,
Alves
,
C. A. S.
, and
Pamplona
,
J.
,
2009
, “
Compressive Behavior of Granite: Experimental Approach
,”
J. Mater. Civ. Eng.
, Vol. 
21
, No. 
9
, pp. 
502
511
, https://doi.org/10.1061/(ASCE)0899-1561(2009)21:9(502)
29.
Wawersik
,
W. R.
and
Brace
,
W. F.
,
1971
, “
Post-Failure Behavior of a Granite and Diabase
,”
Rock Mech.
, Vol. 
3
, No. 
2
, pp. 
61
85
, https://doi.org/10.1007/BF01239627
30.
Wawersik
,
W. R.
and
Fairhurst
,
C.
,
1970
, “
A Study of Brittle Rock Fracture in Laboratory Compression Experiments
,”
Int. J. Rock Mech. Min. Sci. Geomech. Abstr.
, Vol. 
7
, No. 
5
, pp. 
561
575
, https://doi.org/10.1016/0148-9062(70)90007-0
31.
Zheng
,
H.
,
Liu
,
D. F.
,
Lee
,
C. F.
, and
Ge
,
X. R.
,
2005
, “
Principle of Analysis of Brittle-Plastic Rock Mass
,”
Int. J. Solids Struct.
, Vol. 
42
, No. 
1
, pp. 
139
158
, https://doi.org/10.1016/j.ijsolstr.2004.06.050
This content is only available via PDF.
You do not currently have access to this content.