Abstract

Monitoring techniques, used to assess the condition of infrastructures, have been impacted by the rapid developments in remote sensing technology. While these technologies have improved performance evaluation, cogent procedures for evaluating ground movements have yet to be developed. This article presents an application of the three-dimensional terrestrial laser scanning (3D-TLS) technology for assessing the performance of bridge infrastructures, including highway embankments, bridge decks, approach slabs, abutments, and columns supported on drilled shafts. In this research study, a framework was developed, using 3D-TLS technology, to evaluate the ground movements. The survey process, variables, and analysis were demonstrated by performing the field operations at a rehabilitated bridge infrastructure located in North Texas. The analysis depicted vertical movements that were experienced by the approach slab during different time periods. The validation of 3D-TLS results was performed by comparing the vertical movements from the four horizontal inclinometers installed underneath the pavement. The comparison studies revealed similar movement patterns of both inclinometers and processed scans, while the latter provided detailed soil movements over a larger area.

References

1.
Aggarwal
,
S.
,
2004
, “
Principles of Remote Sensing
,”
Satellite Remote Sensing and GIS Applications in Agricultural Meteorology
, presented at Training Workshop, July 7–11, 2003,
Dehra Dun, India
, pp. 
23
38
.
2.
Akca
,
D.
,
2007
, “
Least Squares 3D Surface Matching
,” Ph.D. dissertation,
Swiss Federal Institute of Technology Zurich
, Zurich, Switzerland.
3.
Akca
,
D.
,
2008
,
Quality Assessment of 3D Building Data by 3D Surface Matching
,
Int. Arch. Photogramm. Remote, Sens. Spatial Inf. Sci
., Vol. 
XXXVII
, Part B2, pp. 
771
778
.
4.
Barla
,
G.
,
Antolini
,
F.
, and
Gigli
,
G.
,
2016
, “
3D Laser Scanner and Thermography for Tunnel Discontinuity Mapping
,”
Geomech. Tunnelling
, Vol. 
9
, No. 
1
, pp. 
29
36
, https://doi.org/10.1002/geot.201500050
5.
Bouali
,
E. H.
,
Oommen
,
T.
,
Vitton
,
S.
,
Escobar-Wolf
,
R.
, and
Brooks
,
C.
,
2017
, “
Rockfall Hazard Rating System: Benefits of Utilizing Remote Sensing
,”
Environ. Eng. Geosci.
, Vol. 
23
, No. 
3
, pp. 
165
177
, https://doi.org/10.2113/gseegeosci.23.3.165
6.
Caltrans
2011
, “
Terrestrial Laser Scanning Specifications
,”
Surveys Manual
(January), p. 32.
7.
Campbell
,
J. B.
and
Wynne
,
R. H.
,
2011
,
Introduction to Remote Sensing
,
Guilford Press
,
New York, NY
, 667p.
8.
Choudhury
,
S.
,
2008
,
An Introduction to Geographic Information Technology
,
IK International
,
Delhi, India
, 300p.
9.
Combs
,
J. H.
and
Kemeny
,
J.
,
2011
, “
DOT Study of LIDAR Geotechnical Applications in Eight States
,” in
45th US Rock Mechanics/Geomechanics Symposium
, San Francisco, CA,
American Rock Mechanics Association
,
Alexandria, VA
.
10.
Curran
,
P. J.
,
1985
,
Principles of Remote Sensing
,
Longman Inc.
,
Harlow, UK
, 282p.
11.
Dunnicliff
,
J.
,
1993
,
Geotechnical Instrumentation for Monitoring Field Performance
,
John Wiley & Sons
,
Hoboken, NJ
, 608p.
12.
Ebrahim
,
M. A.
and
Mostafa
,
D.
,
2011
, “
3D Laser Scanners: History, Applications, and Future
,”
Civil Engineering Department, Faculty of Engineering
,
Assiut University, Asyut, Egypt
.
13.
FARO Technologies
2011
,
FARO SCENE User Manual
, p. 2011, https://web.archive.org/web/20181112033854/https://knowledge.faro.com/Software/FARO_SCENE/SCENE/User_Manual_for_SCENE
14.
FARO Technologies
2016
,
FARO® Laser Scanner Focus 3D X 330 HDR The Imaging Laser Scanner for Extended Ranges,
pp. 
3
4
, https://web.archive.org/web/20181112033854/https://knowledge.faro.com/Software/FARO_SCENE/SCENE/User_Manual_for_SCENE
15.
Grejner-Brzezinska
,
D. A.
,
Toth
,
C.
,
Wu
,
T. H.
, and
Shakoor
,
A.
,
2015
, “
Probabilistic Use of LiDAR Data to Detect and Characterize Landslides
,”
Ohio Department of Transporation
,
Columbus, OH
.
16.
Hu
,
H.
,
Fernandez-Steeger
,
T. M.
,
Dong
,
M.
,
Nguyen
,
H. T.
, and
Azzam
,
R.
,
2010
, “
3D Modeling Using LiDAR Data and Its Geological and Geotechnical Applications
,” in
2010 18th International Conference on Geoinformatics
, Beijing, China,
Institute of Electrical and Electronics Engineers
,
Piscataway, NJ
, pp. 
1
6
.
17.
Hu
,
X.
,
Oommen
,
T.
,
Lu
,
Z.
,
Wang
,
T.
, and
Kim
,
J.-W.
,
2017
, “
Consolidation Settlement of Salt Lake County Tailings Impoundment Revealed by Time-Series InSAR Observations from Multiple Radar Satellites
,”
Remote Sens. Environ.
, Vol. 
202
, pp. 
199
209
, https://doi.org/10.1016/j.rse.2017.05.023
18.
Hu
,
Y.
and
Azam
,
S.
,
2008
, “
Instrumentation for Field Monitoring in Expansive Soils
,” presented at the
61st Canadian Geotechnical Conference
, Edmonton, Canada,
National Research Council Canada
,
Ottawa, Canada
.
19.
Jaboyedoff
,
M.
,
Oppikofer
,
T.
,
Abellán
,
A.
,
Derron
,
M.-H.
,
Loye
,
A.
,
Metzger
,
R.
, and
Pedrazzini
,
A.
,
2012
, “
Use of LIDAR in Landslide Investigations: A Review
,”
Nat. Hazards
, Vol. 
61
, No. 
1
, pp. 
5
28
, https://doi.org/10.1007/s11069-010-9634-2
20.
Johnson
,
A. I.
and
Pettersson
,
C. B.
,
1988
,
Geotechnical Applications of Remote Sensing and Remote Data Transmission, ASTM STP967
,
Johnson
A. I.
and
Pettersson
C. B.
, Eds.,
ASTM International
,
West Conshohocken, PA
, https://doi.org/10.1520/STP967-EB
21.
Karbhari
,
V. M.
and
Ansari
,
F.
,
2009
,
Structural Health Monitoring of Civil Infrastructure Systems
,
Woodhead Publishing
,
Cambridge, UK
, 552p.
22.
Kliche
,
C. A.
,
1999
,
Rock Slope Stability
,
Society for Mining, Metallurgy, and Exploration
,
Englewood, CO
, 376p.
23.
Ko
,
J. M.
and
Ni
,
Y. Q.
,
2005
, “
Technology Developments in Structural Health Monitoring of Large-Scale Bridges
,”
Eng. Struct.
, Vol. 
27
, No. 
12
, pp. 
1715
1725
, https://doi.org/10.1016/j.engstruct.2005.02.021
24.
Lato
,
M.
,
2010
, “
Geotechnical Applications of LiDAR Pertaining to Geomechanical Evaluation and Hazard Identification
,” PhD dissertation,
Queen’s University
,
Ontario, Canada
.
25.
Lemmens
,
M.
,
2011
,
Geo-Information: Technologies, Applications and the Environment
, Vol. 
5
,
Springer Science & Business Media
,
Berlin, Germany
, 350p.
26.
Liu
,
J.
,
Luan
,
M.
, and
Wang
,
J.
,
2007
, “
Analysis on Limitation of Inclinometer in Measuring Lateral Displacement of Soft Soil Foundation Under Embankment
,”
J. Yangtze River Sci. Res. Inst.
, Vol. 
5
, p. 18.
27.
Machan
,
G.
and
Bennett
,
V. G.
,
2008
, “
Use of Inclinometers for Geotechnical Instrumentation on Transportation Projects: State of the Practice
,” Transportation Research E-Circular (E-C129),
Transportation Research Board
,
Washington, DC
, 92p.
28.
Manconi
,
A.
,
Casu
,
F.
,
Ardizzone
,
F.
,
Bonano
,
M.
,
Cardinali
,
M.
,
De Luca
,
C.
,
Gueguen
,
E.
,
Marchesini
,
I.
,
Parise
,
M.
, and
Vennari
,
C.
,
2014
, “
Brief Communication: Rapid Mapping of Landslide Events: The 3 December 2013 Montescaglioso Landslide, Italy
,”
Nat. Hazards Earth Syst. Sci.
, Vol. 
14
, No. 
7
, pp. 
1835
1841
, https://doi.org/10.5194/nhess-14-1835-2014
29.
Martínez-Marín
,
R.
,
2016
, “
Comparing Dam Movements Obtained with Terrestrial Laser Scanner (TLS) Data against Direct Pendulums Records
,”
Revista de La Facultad de Ingeniería
, No. 76,
2015
.
30.
Mikkelsen
,
P. E.
and
Wilson
,
S. D.
,
1983
, “
Field Instrumentation: Accuracy Performance, Automation and Procurement
,” presented at the
International Symposium on Field Measurements in Geomechanics
, Zurich, Switzerland,
Balkema
,
Rotterdam, the Netherlands
, Vol. 1, pp. 
251
272
.
31.
O’Kane
,
M.
,
Wilson
,
G. W.
, and
Barbour
,
S. L.
,
1998
, “
Instrumentation and Monitoring of an Engineered Soil Cover System for Mine Waste Rock
,”
Can. Geotech. J.
, Vol. 
35
, No. 
5
, pp. 
828
846
, https://doi.org/10.1139/t98-051
32.
Olivieri
,
W.
,
Lovisolo
,
M.
, and
Crosta
,
G. B.
,
2012
, “
Continuous Geotechnical Monitoring for Alert Thresholds and Hazard Management
,”
Landslides and Engineered Slopes
,
CRC Press
,
Boca Raton, FL
, pp. 
1929
1934
.
33.
Panigrahi
,
B.
and
Goyal
,
M. R
,
2016
,
Modeling Methods and Practices in Soil and Water Engineering
,
Apple Academic Press
,
Waretown, NJ
, 375p.
34.
Riveiro
,
B.
,
DeJong
,
M. J.
, and
Conde
,
B.
,
2016
, “
Automated Processing of Large Point Clouds for Structural Health Monitoring of Masonry Arch Bridges
,”
Autom. Constr.
, Vol. 
7
, Part 3, pp. 
258
268
.
35.
Ruttanaporamakul
,
P.
,
2015
, “
Evaluation Of Lightweight Geofoam For Mitigating Bridge Approach Slab Settlements
,” Ph.D. dissertation,
University of Texas at Arlington
, Arlington, TX.
36.
Ruttanaporamakul
,
P.
,
Puppala
,
A. J.
,
Pedarla
,
A.
,
Bheemasetti
,
T. V.
, and
Williammee
,
R. S.
,
2016
, “
Settlement Mitigation of a Distressed Embankment in Texas by Utilization of Lightweight EPS Geofoam Material
,” presented at the
Transportation Research Board 95th Annual Meeting
, Washington, DC,
Transportation Research Board
,
Washington, DC
.
37.
Schaefer
,
L. N.
,
Lu
,
Z.
, and
Oommen
,
T.
,
2016
, “
Post-Eruption Deformation Processes Measured Using ALOS-1 and UAVSAR InSAR at Pacaya Volcano, Guatemala
,”
Remote Sens.
, Vol. 
8
, No. 
1
, p. 73, https://doi.org/10.3390/rs8010073
38.
Slope Indicator
2004
, “
Guide to Geotechnical Instrumentation
,”
Slope Indicator
,
Mukilteo, WA
, 52p.
39.
Smedley
,
M. I.
,
Paulson
,
R.
, and
Tucker
,
A.
,
2009
, “
Remote Sensing for Highway Management of Landslides
,”
Proc. Inst. Civ. Eng. Geotech. Eng
., Vol. 
162
, No. 
3
, pp. 
141
150
.
40.
Van Goor
,
B.
,
2011
, “
Change Detection and Deformation Analysis Using Terrestrial Laser Scanning
,” Zhurnal Eksperimental’noi I Teoreticheskoi Fiziki.
41.
Wieczorek
,
G. F.
and
Snyder
,
J. B.
,
2009
, “
Monitoring Slope Movements
,”
Geological Monitoring
,
Geological Society of America
,
Boulder, CO
, pp. 
245
271
.
42.
Zwissler
,
B.
,
Oommen
,
T.
,
Vitton
,
S.
, and
Seagren
,
E. A.
,
2017
, “
Thermal Remote Sensing for Moisture Content Monitoring of Mine Tailings: Laboratory Study
,”
Environ. Eng. Geosci.
, Vol. 
23
, No. 
4
, pp. 
299
312
.
This content is only available via PDF.
You do not currently have access to this content.