Abstract

Laboratory testing of a mass of large-particle-sized tire derived aggregate (TDA) to assess performance-related properties such as void ratio, compressive creep, and hydraulic conductivity under large loads poses a number of experimental challenges. Large-particle-sized TDA is shredded scrap tires with particle sizes from 50 mm to over 305 mm. The large particle size of the TDA mass results in experimental challenges, such as the need for a large test chamber and the need for a load application system with a capacity to apply and sustain large loads, while accommodating large vertical displacements from the compression of the TDA mass. As an example, to put these requirements into perspective, a mass of TDA with a nominal particle size of 150 mm requires a test cell diameter of at least 600 mm and preferably a diameter of 700 mm. If a load of 400 kPa were to be applied onto the TDA mass to simulate approximately 35 m to 40 m of overlying material (waste and routinely applied cover materials) in an application such as a landfill, the test apparatus must be capable of delivering over 150 kN of applied load. Furthermore, for a reasonable initial mass of TDA that is 1.2 m thick, the test cell will have to be designed to maintain that load over 0.6 m of vertical displacement because of the compression of the TDA mass. This article presents a number of practical strategies that were implemented to overcome the experimental challenges with testing large particle size, highly compressible TDA mass to establish the performance related properties for use in service. In some instances, components of the test equipment had to be re-engineered to accommodate exigencies that had not been anticipated, such as differential compression of the TDA mass. The focus of this article is on equipment design and experimental methodologies. A few sample results from the study are presented to illustrate the successful implementation of the design methodologies. Although TDA has been studied in this work, the strategies described herein can be applied to a wide range of highly compressible materials under large loads.

References

1.
ASTM C127-12
2012
,
Standard Test Method for Relative Density (Specific Gravity), and Absorption of Coarse Aggregate
(Superseded),
ASTM International
,
West Conshohocken, PA
, www.astm.org
2.
ASTM D2435/D2435M–11
2011
,
Standard Test Methods for One-Dimensional Consolidation Properties of Soils Using Incremental Loading
,
ASTM International
,
West Conshohocken, PA
, www.astm.org
3.
ASTM D2990-09
2009
,
Standard Test Methods for Tensile, Compressive, and Flexural Creep and Creep-Rupture of Plastics
(Superseded),
ASTM International
,
West Conshohocken, PA
, www.astm.org
4.
ASTM D6270-08
2008
,
Standard Practice for Use of Scrap Tires in Civil Engineering Applications
(Superseded),
ASTM International
,
West Conshohocken, PA
, www.astm.org
5.
ASTM D7406-07
2007
,
Standard Test Method for Time-Dependent (Creep) Deformation under Constant Pressure for Geosynthetic Drainage Products
,
ASTM International
,
West Conshohocken, PA
, www.astm.org
6.
Beaven
,
R. P.
,
2000
, “
The Hydrogeological and Geotechnical Properties of Household Waste in Relation to Sustainable Landfilling
,” Ph.D. dissertation,
University of London
, London, UK.
7.
Beaven
,
R. P.
,
Hudson
,
A. P.
,
Knox
,
K.
,
Powrie
,
W.
, and
Robinson
,
J. P.
,
2013
, “
Clogging of Land Fill Tyre and Aggregate Drainage Layers by Methanogenic Leachate and Implications for Practice
,”
Waste Manage.
, Vol. 
33
, No. 
2
, pp. 
431
444
, https://doi.org/10.1016/j.wasman.2012.10.021
8.
Beaven
,
R. P.
,
Powrie
,
W.
,
Hudson
,
A. P.
, and
Parkes
,
D. J.
,
2006
, “
Compressibility of Tyres for Use in Landfill Drainage Systems
,”
Proc. Inst. Civ. Eng. Waste Resour. Manage.
, Vol. 
159
, No. 
4
, pp. 
173
180
.
9.
Dickinson
,
S.
and
Brachman
,
R. W. I.
,
2008
, “
Assessment of Alternative Protection Layers for a Geomembrane-Geosynthetic Clay Liner (GM-GCL) Composite Liner
,”
Can. Geotech. J.
, Vol. 
45
, No. 
11
, pp. 
1594
1610
, https://doi.org/10.1139/T08-081
10.
Donovan
,
R.
,
Dempsey
,
J.
, and
Owen
,
S.
,
1996
, “
Scrap Tire Utilization in Landfill Applications
,” presented at the
17th Biennial Waste Processing Conference
, Atlantic City, NJ,
American Society of Civil Engineers
,
Reston, VA
, pp. 
353
383
.
11.
Duffy
,
D. P.
,
1995
, “
Using Tire Chips as Leachate Drainage Layer
,”
Waste Age
, Vol. 
26
, No. 
9
, pp. 
113
122
.
12.
Dunicliff
,
J.
,
1988
,
Geotechnical Instrumentation for Monitoring Field Performance
,
John Wiley and Sons
,
New York, NY
, pp. 
165
177
.
13.
Evans
,
P.
,
1997
, “
Use of Tire Shred in Landfill Construction
,” presented at the
Third Annual Symposium Environmentally Friendly Technologies in Geotechnical Engineering
, Edmonton, Canada,
Geotechnical Society of Edmonton
,
Edmonton, Canada
, pp. 
1
8
.
14.
Fleming
,
I. R.
and
Rowe
,
R. K.
,
2004
, “
Laboratory Studies of Clogging of Landfill Leachate Collection and Drainage Systems
,”
Can. Geotech. J.
, Vol. 
41
, No. 
1
, pp. 
134
153
, https://doi.org/10.1139/t03-070
15.
Fleming
,
I. R.
,
Rowe
,
R. K.
, and
Cullimore
,
D. R.
,
1999
, “
Field Observations of Clogging in Landfill Leachate Collection Systems
,”
Can. Geotech. J.
, Vol. 
36
, No. 
4
, pp. 
685
707
, https://doi.org/10.1139/t99-036
16.
Hall
,
T. J.
,
1991
, “
Reuse of Shredded Tire Material for Leachate Collection Systems
,” presented at the
14th Annual Madison Waste Conference
, Madison, WI,
University of Wisconsin
,
Madison, WI
, pp. 
367
376
.
17.
Hudson
,
A. P.
,
Beaven
,
R. P.
,
Powrie
,
W.
, and
Parkes
,
D.
,
2007
, “
Hydraulic Conductivity of Tyres in Landfill Drainage Systems
,”
Proc. Inst. Civ. Eng. Waste Resour. Manage.
, Vol. 
160
, No. 
2
, pp. 
63
70
.
18.
McIsaac
,
R.
and
Rowe
,
R. K.
,
2005
, “
Change in Leachate Chemistry and Porosity as Leachate Permeates through Tire Shreds and Gravel
,”
Can. Geotech. J.
, Vol. 
42
, No. 
4
, pp. 
1173
1188
, https://doi.org/10.1139/t05-050
19.
Mwai
,
M.
,
Wichuk
,
K.
, and
McCartney
,
D.
,
2010
, “
Implications of Using Tire-Derived Aggregate for Landfill Leachate Collection and Drainage Systems
,” presented at the
Solid Waste Association of North America, Fifth Canadian Symposium
,
Banff
,
Canada
.
20.
Olson
,
R. E
.,
1986
, “
State of the Art: Consolidation Testing
,”
Consolidation of Soils: Testing and Evaluation
, ASTM STP892,
Yong
,
R. N.
and
Townsend
,
F. C.
, Eds.,
ASTM International
,
West Conshohocken, PA
, pp. 
7
70
, https://doi.org/10.1520/STP34606S
21.
Qian
,
X.
,
Koerner
,
R. M.
, and
Gray
,
D. H.
,
2001
,
Geotechnical Aspects of Landfill Design and Construction
,
Pearson Education
,
Upper Saddle River, NJ
, pp. 
294
330
.
22.
Reddy
,
K. R.
and
Marella
,
A.
,
2001
, “
Properties of Different Size Scrap Tire Shreds: Implications on Using as Drainage Material in Landfill Cover Systems
,” presented at the
17th International Conference on Solid Waste Technology and Management
,
Philadelphia, PA
, 19p.
23.
Reddy
,
K. R.
and
Saichek
,
R. E.
,
1998
, “
Characterization and Performance Assessment of Shredded Scrap Tires as Leachate Drainage Material in Landfills
,” presented at the
14th International Conference on Solid Waste Technology and Management
,
Philadelphia, PA
.
24.
Rowe
,
R. K.
,
2005
, “
Long-Term Performance of Contaminant Barrier Systems
,”
Géotechnique
, Vol. 
55
, No. 
9
, pp. 
631
678
, https://doi.org/10.1680/geot.2005.55.9.631
25.
Rowe
,
R. K.
and
Babcock
,
D.
,
2007
, “
Modelling the Clogging of Coarse Gravel and Tire Shreds in Column Tests
,”
Can. Geotech. J.
, Vol. 
44
, No. 
11
, pp. 
1273
1285
, https://doi.org/10.1139/T07-057
26.
Rowe
,
R. K.
and
Fleming
,
I. R.
,
1998
, “
Estimating the Time for Clogging of Leachate Collection Systems
,” presented at the
Third International Congress on Environmental Geotechniques
, Lisbon, Portugal,
A. A. Balkema
,
Rotterdam, the Netherlands
, pp. 
23
28
.
27.
Rowe
,
R. K.
and
McIsaac
,
R.
,
2005
, “
Clogging of Tire Shreds and Gravel Permeated with Landfill Leachate
,”
J. Geotech. Geoenviron. Eng.
, Vol. 
131
, No. 
6
, pp. 
682
693
, https://doi.org/10.1061/(ASCE)1090-0241(2005)131:6(682)
28.
Rowe
,
R. K.
,
Quigley
,
R. M.
,
Brachman
,
R. W. I.
, and
Booker
,
J. R.
,
2004
,
Barrier Systems for Waste Disposal Facilities
,
Taylor and Francis Group
,
London, UK
, 587p.
29.
Sarsby
,
R. W.
and
Vickers
,
B.
,
1986
, “
Side Friction in Consolidation Tests on Fibrous Peat
,”
Consolidation of Soils: Testing and Evaluation, ASTM STP892
,
Yong
R. N.
and
Townsend
F. C.
, Eds.,
ASTM International
,
West Conshohocken, PA
, pp. 
485
489
, https://doi.org/10.1520/STP34629S
30.
Strenk
,
P. M.
,
Wartman
,
J.
,
Grubb
,
D. G.
,
Humprey
,
D. N.
, and
Natale
,
M. F.
,
2007
, “
Variability and Scale-Dependency of Tire-Derived Aggregate
,”
J. Mater. Civ. Eng.
, Vol. 
19
, No. 
3
, pp. 
233
241
, https://doi.org/10.1061/(ASCE)0899-1561(2007)19:3(233)
31.
Warith
,
M. A.
,
Evgin
,
E.
, and
Benson
,
P. A.
,
2004
, “
Suitability of Shredded Tires for Use in Landfill Leachate Collection Systems
,”
Waste Manage.
, Vol. 
24
, No. 
10
, pp. 
967
979
, https://doi.org/10.1016/j.wasman.2004.08.004
32.
Yu
,
Y.
and
Rowe
,
K. R.
,
2012
, “
Modelling Leachate-Induced Clogging of Porous Media
,”
Can. Geotech. J.
, Vol. 
49
, No. 
8
, pp. 
877
890
, https://doi.org/10.1139/t2012-052
33.
Zekkos
,
D.
,
Bray
,
J. D.
,
Kavazanjian
,
E.
, Jr.
,
Matasovic
,
N.
,
Rathje
,
E. M.
,
Reimer
,
M. F.
, and
Stokoe
,
K. H.
, II
,
2006
, “
Unit Weight of Municipal Solid Waste
,”
J. Geotech. Geoenviron. Eng.
, Vol. 
132
, No. 
10
, pp. 
1250
1261
, https://doi.org/10.1061/(ASCE)1090-0241(2006)132:10(1250)
34.
Zimmerman
,
P. S.
,
1997
, “
Compressibility, Hydraulic Conductivity, and Soil Infiltration Testing of Tire Shreds and Field Testing of a Shredded Tire Horizontal Drain
,” M.S. thesis,
Iowa State University
, Ames, IA.
This content is only available via PDF.
You do not currently have access to this content.