Abstract

Hundreds of variable-head permeability (slug) tests were carried out in monitoring wells to assess the hydraulic conductivity, K, of an unconfined sand-and-gravel aquifer and, after that, the migration of contaminants. The pollution case has generated a legal dispute about the loss of many water supply wells and major health issues. The experts for the defendants had analyzed the slug test data with methods that differ from the standards. For the legal issues, the author reanalyzed all test data and made all verifications as required by standards. The new K values were about three times higher than the initial values obtained without respect to the standards, a major difference. The divergence was solved by studying the statistical distributions of K values. The initial values were too low to explain the high K values obtained with pumping tests, but the new K values correctly explained them. The new K values predicted groundwater velocity values at least three times higher than the initial values predicted with K values obtained without following the standards. These higher velocities were confirmed by field tracer tests performed by independent companies that designed and operated field pilot tests for decontaminating groundwater. The capacity to reconcile medium-scale tests (slug tests in monitoring wells) and large-scale tests (pumping tests in large wells) forms new evidence that strengthens the reasons for why it is important to follow the standards and make the required verifications.

References

1.
AFNOR NF P94-132
1992
,
Lefranc Water Test
(in French),
Association Française de Normalisation
,
Paris, France
, www.afnor.org
2.
ASTM D4044-96
2008
,
Standard Test Method (Field Procedure) for Instantaneous Change in Head (Slug) Tests for Determining Hydraulic Properties of Aquifers
,
ASTM International
,
West Conshohocken, PA
, www.astm.org
3.
ASTM D5092-04
2010
,
Standard Practice for Design and Installation of Groundwater Monitoring Wells
(Superseded),
ASTM International
,
West Conshohocken, PA
, www.astm.org
4.
ASTM D5785-95
2010
,
Standard Test Method for (Analytical Procedure) for Determining Transmissivity of Confined Nonleaky Aquifers by Underdamped Well Response to Instantaneous Change in Head (Slug Test)
,
ASTM International
,
West Conshohocken, PA
, www.astm.org
5.
ASTM D5881-95
2010
,
Standard Test Method for (Analytical Procedure) Determining Transmissivity of Confined Nonleaky Aquifers by Critically Damped Well Response to Instantaneous Change in Head (Slug Test)
,
ASTM International
,
West Conshohocken, PA
, www.astm.org
6.
Biogénie
2010
, Rapport Final—Essai pilote—Barrière par barbotage à l’air—Garnison Valcartier (Québec) pour Construction de Défense Canada, File CD6615, 466p.
7.
Bouwer
,
H.
and
Rice
,
R. C.
,
1976
, “
A Slug Test for Determining Hydraulic Conductivity of Unconfined Aquifers with Completely or Partially Penetrating Wells
,”
Water Resour. Res.
, Vol. 
12
, No. 
3
, pp. 
423
428
, https://doi.org/10.1029/WR012i003p00423
8.
Butler
,
J. J.
, Jr.
and
Garnett
,
E. J.
,
2000
, “
Simple Procedure for Analysis of Slug Tests in Formations of High Hydraulic Conductivity Using Spreadsheet and Scientific Graphics Software
,” Report No. 2000-40,
Kansas Geological Survey
,
Lawrence, KS
.
9.
CAN/BNQ 2501-135-M88
1988
,
Soils – Determination of Permeability by the Lefranc Method
(Superseded),
Standards Council of Canada
,
Ottawa, Canada
, www.scc.ca
10.
CAN/BNQ 2501-135
2008
,
Soils – Determination of the Coefficient of Permeability by the Lefranc Method
(Superseded),
Standards Council of Canada
,
Ottawa, Canada
, www.scc.ca
11.
CAN/BNQ 2501-135/2014
2014
,
Soils – Determination of the Coefficient of Permeability by the Lefranc Method
,
Standards Council of Canada
,
Ottawa, Canada
, www.scc.ca
12.
Chapuis
,
R. P.
,
1995
, “
Controlling the Quality of Ground Water Parameters: Some Examples
,”
Can. Geotech. J.
, Vol. 
32
, No. 
1
, pp. 
172
177
, https://doi.org/10.1139/t95-014
13.
Chapuis
,
R. P.
,
1998
, “
Overdamped Slug Test in Monitoring Wells: Review of Interpretation Methods with Mathematical, Physical, and Numerical Analysis of Storativity Influence
,”
Can. Geotech. J.
, Vol. 
35
, No. 
5
, pp. 
697
719
, https://doi.org/10.1139/t98-041
14.
Chapuis
,
R. P.
,
1999
, “
Borehole Variable-Head Permeability Tests in Compacted Clay Liners and Covers
,”
Can. Geotech. J.
, Vol. 
36
, No. 
1
, pp. 
39
51
.
15.
Chapuis
,
R. P.
,
2001
, “
Extracting Piezometric Level and Hydraulic Conductivity from Tests in Driven Flush-Joint Casings
,”
Geotech. Test. J.
, Vol. 
24
, No. 
2
, pp. 
209
219
, https://doi.org/10.1520/GTJ11341J
16.
Chapuis
,
R. P.
,
2009
, Class Action—Residents of Shannon—Preliminary Expert Report on Groundwater Conditions (in French), 970p.
17.
Chapuis
,
R. P.
,
2009
, “
Interpreting Slug Tests with Large Data Sets
,”
Geotech. Test. J.
, Vol. 
32
, No. 
2
, pp. 
139
146
, https://doi.org/10.1520/GTJ101058
18.
Chapuis
,
R. P.
,
2009
, “
Variable Head Permeability Tests in Monitoring Wells: Comparing the Shape Factor Defined by Bouwer and Rice (1976) to the Shape Factor Given by Hvorslev (1951)
,”
Geotech. News
, Vol. 
27
, No. 
1
, pp. 
41
43
.
19.
Chapuis
,
R. P.
,
2010
, Class Action—Residents of Shannon—Expert Report on Groundwater Conditions (in French), 156p.
20.
Chapuis
,
R. P.
,
2012
, “
Improved Curve Fitting Methods for Underdamped Slug Tests
,”
Geotech. Test. J.
, Vol. 
35
, No. 
5
, pp. 
752
761
, https://doi.org/10.1520/GTJ103092
21.
Chapuis
,
R. P.
,
2012
, “
Predicting the Saturated Hydraulic Conductivity of Soils: A Review
,”
Bull. Eng. Geol. Environ.
, Vol. 
71
, No. 
3
, pp. 
401
434
, https://doi.org/10.1007/s10064-012-0418-7
22.
Chapuis
,
R. P.
,
2013
, “
Permeability Scale Effects in Sandy Aquifers: A Few Case Studies
,”
Challenges and Innovations in Geotechnics: Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, Paris, 2013
,
Delage
,
P.
,
Desrues
,
J.
,
Frank
,
R.
,
Puech
,
A.
, and
Schlosser
,
F.
, Eds., Vol. 
1
,
Presses des Ponts
,
Paris, France
, pp. 
507
510
.
23.
Chapuis
,
R. P.
,
2015
, “
Overdamped Slug Tests in Aquifers: The Three Diagnostic Graphs for a User-Independent Interpretation
,”
Geotech. Test. J.
, Vol. 
38
, No. 
4
, pp. 
474
489
, https://doi.org/10.1520/GTJ20140250
24.
Chapuis
,
R. P.
,
2016
,
Extracting Information from Grain Size Distribution Curves
,
Geotics Editions
,
Montreal, Canada
, 197p.
25.
Chapuis
,
R. P.
,
2017
, “
Stress and Strain Fields for Overdamped Slug Tests in Aquifer Materials, and Resulting Conservation Equation
,”
Int. J. Numer. Anal. Methods Geomech.
, Vol. 
41
, No. 
18
, pp. 
1908
1921
, https://doi.org/10.1002/nag.2706
26.
Chapuis
,
R. P.
,
2018
, “
Méthode de Décomposition Modale: Description Quantitative de la Granulométrie et Autres Paramètres
,”
Rev. Fr. Géotech.
, Vol. 
154
, pp. 
1
8
, https://doi.org/10.1051/geotech/2018001
27.
Chapuis
,
R. P.
and
Chenaf
,
D.
,
2002
, “
Slug Tests in a Confined Aquifer: Experimental Results in a Large Soil Tank and Numerical Modeling
,”
Can. Geotech. J.
, Vol. 
39
, No. 
1
, pp. 
14
21
, https://doi.org/10.1139/t01-070
28.
Chapuis
,
R. P.
and
Chenaf
,
D.
,
2003
, “
Variable-Head Field Permeability Tests in Driven Flush-Joint Casings: Physical and Numerical Modeling
,”
Geotech. Test. J.
, Vol. 
26
, No. 
3
, pp. 
245
256
, https://doi.org/10.1520/GTJ11302J
29.
Chapuis
,
R. P.
and
Chenaf
,
D.
,
2010
, “
Driven Field Permeameters: Reinventing the Wheel?
Geotech. News
, Vol. 
28
, No. 
1
, pp. 
37
42
.
30.
Chapuis
,
R. P.
and
Chenaf
,
D.
,
2018
, “
Two Methods to Detect Poorly Sealed Monitoring Wells Using Pumping Test Data in a Confined Aquifer
,”
Geotech. Test. J.
, Vol. 
42
, No. 
1
, https://doi.org/10.1520/GTJ20170032 (in press).
31.
Chapuis
,
R. P.
,
Dallaire
,
V.
,
Gagnon
,
F.
,
Marcotte
,
D.
, and
Chouteau
,
M.
,
2007
, “
Falling-Head Permeability Tests in an Unconfined Sand Aquifer
,”
Geotech. Test. J.
, Vol. 
30
, No. 
2
, pp. 
104
112
, https://doi.org/10.1520/GTJ100067
32.
Chapuis
,
R. P.
,
Dallaire
,
V.
, and
Saucier
,
A.
,
2014
, “
Getting Information from Modal Decomposition of Grain Size Distribution Curves
,”
Geotech. Test. J.
, Vol. 
37
, No. 
2
, pp. 
282
295
, https://doi.org/10.1520/GTJ20120218
33.
Chapuis
,
R. P.
and
Duhaime
,
F.
,
2017
, “
Taking into Account Data Accuracy for Interpretation of Slug Tests in Confined or Unconfined Aquifers
,”
Geotech. Test. J.
, Vol. 
40
, No. 
1
, pp. 
122
133
, https://doi.org/10.1520/GTJ20150211
34.
Chapuis
,
R. P.
and
Légaré
,
P.-P.
,
1992
, “
A Simple Method for Determining the Surface Area of Fine Aggregates and Fillers in Bituminous Mixtures
,”
Effects of Aggregates and Mineral Fillers on Asphalt Mixture Performance, ASTM STP1147
,
Meininger
R. C.
, Ed.,
ASTM International
,
West Conshohocken, PA
, pp. 
177
186
, https://doi.org/10.1520/STP24217S
35.
Chapuis
,
R. P.
,
Paré
,
J. J.
, and
Lavallée
,
J. G.
,
1981
, “
In Situ Variable Head Permeability Tests (in French)
,” presented at the
Tenth International Conference on Soil Mechanics and Foundation Engineering
, Stockholm, Sweden,
A. A. Balkema
,
Leiden, the Netherlands
, Vol. 
1
, pp. 
401
406
.
36.
Chapuis
,
R. P.
and
Sabourin
,
L.
,
1989
, “
Effects of Installation of Piezometers and Wells on Groundwater Characteristics and Measurements
,”
Can. Geotech. J.
, Vol. 
26
, No. 
4
, pp. 
604
613
, https://doi.org/10.1139/t89-073
37.
Chesnaux
,
R.
and
Chapuis
,
R. P.
,
2007
, “
Detecting and Quantifying Leakage through Defective Borehole Seals: A New Methodology and Laboratory Verification
,”
Geotech. Test. J.
, Vol. 
30
, No. 
1
, pp. 
17
24
, https://doi.org/10.1520/GTJ100500
38.
Chesnaux
,
R.
,
Chapuis
,
R. P.
, and
Molson
,
J. W.
,
2006
, “
A New Method to Characterize Hydraulic Short-Circuits in Defective Borehole Seals
,”
Groundwater
, Vol. 
44
, No. 
5
, pp. 
676
681
.
39.
Chiasson
,
P.
,
2005
, “
Methods of Interpretation of Borehole Falling-Head Tests Performed in Compacted Clay Liners
,”
Can. Geotech. J.
, Vol. 
42
, No. 
1
, pp. 
79
90
, https://doi.org/10.1139/t04-068
40.
Chiasson
,
P.
,
2012
, “
Interpretation of Falling-Head Tests in Presence of Random Measurement Error
,”
ISRN Civ. Eng.
, Vol. 
2012
, 871467, https://doi.org/10.5402/2012/871467
41.
Cooper
,
H. H.
, Jr.
,
Bredehoeft
,
J. D.
, and
Papadopulos
,
I. S.
,
1967
, “
Response of a Finite-Diameter Well to an Instantaneous Change of Water
,”
Water Resour. Res.
, Vol. 
3
, No. 
1
, pp. 
263
269
, https://doi.org/10.1029/WR003i001p00263
42.
Dessau
2010
, Rapport Final—Essai pilote de la technologie barrière multi-réactive pour le contrôle du panache de TCE à la Garnison Valcartier, Québec, Canada, pour Construction de Défense Canada, File 049-P007146-0340-01-RE-1100-01, 460p.
43.
Duhaime
,
F.
and
Chapuis
,
R. P.
,
2014
, “
A Coupled Analysis of Cavity and Pore Volume Changes for Pulse Tests Conducted in Soft Clay Deposits
,”
Int. J. Numer. Anal. Methods Geomech.
, Vol. 
38
, No. 
9
, pp. 
903
924
, https://doi.org/10.1002/nag.2238
44.
Duhaime
,
F.
and
Chapuis
,
R. P.
,
2017
, “
Biot Analysis of Deformation during Variable-Head Field Permeability Tests in Soft Soils
,” presented at the
19th International Conference on Soil Mechanics and Geotechnical Engineering (ICSMGE 2017)
, Seoul, Korea, International Society for Soil Mechanics and Geotechnical Engineering, London, UK, 2017, pp. 
579
582
.
45.
Hvorslev
,
M. J.
,
1951
, “
Time-Lag and Soil Permeability in Ground-Water Observations
,” Bulletin 36,
Waterways Experiment Station, U.S. Army Corp of Engineers
,
Vicksburg, MS
, 57p.
46.
ISO 22282-2
2012
,
Geotechnical Investigation and Testing – Geohydraulic Testing – Part 2: Water Permeability Tests in a Borehole Using Open Systems
,
International Organization for Standardization
,
Geneva, Switzerland
, www.iso.org
47.
Kipp
,
K. L.
, Jr.
,
1985
, “
Type Curve Analysis of Inertial Effects in the Response of a Well to a Slug Test
,”
Water Resour. Res.
, Vol. 
21
, No. 
9
, pp. 
1397
1408
, https://doi.org/10.1029/WR021i009p01397
48.
Lefebvre
,
R.
,
Boutin
,
A.
,
Martel
,
R.
,
Therrien
,
R.
,
Parent
,
M.
, and
Blais
,
V.
,
2003
,
Characterization and Numerical Modeling of Seepage and TCE Migration in Groundwater of the Valcartier Area, Quebec, Canada
(in French), Research Report R-631,
Institut National de la Recherche Scientifique
,
Quebec City, Canada
, 117p.
49.
Lefranc
,
E.
,
1937
, “
La théorie des poches absorbantes et son application à la détermination du coefficient de perméabilité des terrains en place et au calcul du débit des nappes d’eau
,”
Le Génie Civil
, Vol. 
111
, No. 
20
, pp. 
758
413
.
50.
Lagacé
,
F.
,
2004
, “
Rapport de photo-interprétation, Secteur de la base militaire de Valcartier, Shannon, Québec
,” Ministère de l’Environnement, Québec, 99p.
51.
Marefat
,
V.
,
Chapuis
,
R. P.
,
Duhaime
,
F.
, and
Le Borgne
,
V.
,
2019
, “
Fully Grouted Piezometers under Transient Flow Conditions: Field Performance and Numerical Studies
,”
Geotech. Test. J.
, Vol. 
42
, No. 
2
, https://doi.org/10.1520/GTJ20170290 (in press).
52.
MDDEP
2009
,
System of Hydrogeologic Information
(SIH, in French),
Ministry of Sustainable Development, Environment and Parks
,
Quebec
.
53.
Nielsen
,
D. M.
and
Schalla
,
R.
,
2005
, “
Design and Installation of Ground-Water Monitoring Wells
,”
Practical Handbook of Environmental Site Characterization and Ground–Water Monitoring
, 2nd ed.,
CRC Press
,
Boca Raton, FL
, pp. 
639
806
.
54.
Ouellon
,
T.
,
Blais
,
V.
,
Racine
,
C.
,
Ballard
,
J.-M.
, and
Lefebvre
,
R.
,
2010
,
Synthesis of Hydrogeological Context and TCE Problems in the Valcartier Area, Quebec, Canada
(in French), Research Report R-961,
Institut National de la Recherche Scientifique
,
Quebec City, Canada
, 194p.
55.
Ouellon
,
T.
,
Lefebvre
,
R.
,
Marcotte
,
D.
,
Boutin
,
A.
,
Blais
,
V.
, and
Parent
,
M.
,
2008
, “
Hydraulic Conductivity Heterogeneity of a Local Deltaic Aquifer System from the Kriged 3D Distribution of Hydrofacies from Borehole Logs, Valcartier, Canada
,”
J. Hydrol.
, Vol. 
351
, Nos. 
1–2
, pp. 
71
86
, https://doi.org/10.1016/j.jhydrol.2007.11.040
56.
Ricard-Châtelain
,
B.
,
2015
, “
TCE à Shannon: La Décontamination Retardée [TCE at Shannon: Delayed Decontamination]
,”
Le Soleil
, June 8.
57.
Sanexen–Amec
2005
, Caractérisation environnementale préliminaire – Municipalité de Shannon, File RA04-247-5, 994p.
58.
Schneebeli
,
G.
,
1966
,
Hydraulique Souterraine
,
Eyrolles
,
Paris, France
, 363p.
59.
SNC–Lavalin Environnement
2008
, Suivi environnemental des eaux souterraines du site de la Société Immobilière Valcartier Inc. (SIVI) à Val Bélair 2007, File 604930, 46p.
60.
Spieser v. Canada,
2012
QCCS 2801, No. 200–06–000038–037, 123p.
61.
Uffink
,
G. J. M.
,
1984
, “
Theory of the Oscillating Slug Test
,” Report of the National Institute for Public Health and Environmental Hygiene (in Dutch),
Bilthoven
,
the Netherlands
, 18p.
62.
van der Kamp
,
G.
,
1976
, “
Determining Aquifer Transmissivity by Means of Well Response Tests: The Underdamped Case
,”
Water Resour. Res.
, Vol. 
12
, No. 
1
, pp. 
71
77
, https://doi.org/10.1029/WR012i001p00071
63.
Zhang
,
L.
,
Chapuis
,
R. P.
, and
Marefat
,
V.
,
2019
, “
Field Permeability Tests: Importance of Calibration and Monitoring for Barometric Pressure Sensors
,”
Geotech. Test. J.
, Vol. 
42
, No. 
1
, https://doi.org/10.1520/GTJ20160306 (in press).
This content is only available via PDF.
You do not currently have access to this content.