Abstract

This study introduces an innovative diagnostic technique for the detection of leaks through liners using the changes in the electrical resistivity of the base soil. The system design is based on the well-known principles of the electrical resistivity method. A new leak-detection system is developed by pairing a resistivity-sensing technique with four-probe ground resistance–testing equipment. The guidelines given by AS 1289.4.4.1-1997, Methods of Testing Soils for Engineering Purposes—Soil Chemical Tests—Determination of the Electrical Resistivity of a Soil—Method for Sands and Granular Materials (Superseded), are used for the system design. The details for the fabrication of the system are presented extensively in this article. Some test results are also provided to substantiate the efficacy of the system in determining leakage issues through liners. It is demonstrated that this system can be used to effectively detect and locate liner leaks by simulating the field conditions. This newly developed innovative diagnostic technique can be useful in designing the monitoring systems for waste storage and handling facilities, contamination detection, liner leak detection, development of sensors, and so on.

References

1.
AS 1289.4.4.1-1997
1997
,
Methods of Testing Soils for Engineering Purposes—Soil Chemical Tests—Determination of the Electrical Resistivity of a Soil—Method for Sands and Granular Materials
(Superseded),
Standards Australia
,
Sydney, Australia
, www.standards.org.au
2.
ASTM D6431-99(2010)
2010
,
Standard Guide for Using the Direct Current Resistivity Method for Subsurface Investigation
(Superseded),
ASTM International
,
West Conshohocken, PA
, www.astm.org
3.
ASTM D6747-15
2015
,
Standard Guide for Selection of Techniques for Electrical Leak Location of Leaks in Geomembranes
,
ASTM International
,
West Conshohocken, PA
, www.astm.org
4.
ASTM D7002-16
2016
,
Standard Practice for Electrical Leak Location on Exposed Geomembranes Using the Water Puddle Method
,
ASTM International
,
West Conshohocken, PA
, www.astm.org
5.
ASTM D7240-06(2011)
2011
,
Standard Practice for Leak Location Using Geomembranes with an Insulating Layer in Intimate Contact with a Conductive Layer via Electrical Capacitance Technique (Conductive Geomembrane Spark Test)
(Superseded),
ASTM International
,
West Conshohocken, PA
, www.astm.org
6.
ASTM D7703-16
2016
,
Standard Practice for Electrical Leak Location on Exposed Geomembranes Using the Water Lance Method
,
ASTM International
,
West Conshohocken, PA
, www.astm.org
7.
ASTM D7953-14
2014
,
Standard Practice for Electrical Leak Location on Exposed Geomembranes Using the Arc Testing Method
,
ASTM International
,
West Conshohocken, PA
, www.astm.org
8.
Ben Othmen
,
A.
and
Bouassida
,
M.
,
2013
, “
Detecting Defects in Geomembranes of Landfill Liner Systems: Durable Electrical Method
,”
Int. J. Geotech. Eng.
, Vol. 
7
, No. 
2
, pp. 
130
135
, https://doi.org/10.1179/1938636213Z.00000000013
9.
Bouazza
,
A.
and
Van Impe
,
W. F.
,
1998
, “
Liner Design for Waste Disposal Sites
,”
Environ. Geol.
, Vol. 
35
, No. 
1
, pp. 
41
54
, https://doi.org/10.1007/s002540050291
10.
Daniel
,
D. E.
,
1993
, “
Landfills and Impoundments
,”
Geotechnical Practice for Waste Disposal
,
Springer Publishing
,
New York, NY
, pp. 
97
112
.
11.
Giroud
,
J. P.
,
1984
, “
Impermeability: The Myth and a Rational Approach
,” presented at the
International Conference on Geomembranes
, Denver, CO,
Industrial Fabrics Association International, St. Paul
,
MN
, Vol. 
1
, pp. 
157
162
.
12.
Mohamed
,
A. M. O.
,
Said
,
R. A.
, and
Al-Shawawreh
,
N. K.
,
2002
, “
Development of a Methodology for Evaluating Subsurface Concentrations of Pollutants Using Electrical Polarization Technique
,”
Geotech. Test. J.
, Vol. 
25
, No. 
2
, pp. 
157
167
, https://doi.org/10.1520/GTJ11359J
13.
Oh
,
M.
,
Seo
,
M. W.
,
Lee
,
S.
, and
Park
,
J.
,
2008
, “
Applicability of Grid-Net Detection System for Landfill Leachate and Diesel Fuel Release in the Subsurface
,”
J. Contam. Hydrol.
, Vol. 
96
, Nos. 
1–4
, pp. 
69
82
, https://doi.org/10.1016/j.jconhyd.2007.10.002
14.
Pandey
,
L. M. S.
and
Shukla
,
S. K.
,
2017
, “
Detection of Leachate Contamination in Perth Landfill Base Soil Using Electrical Resistivity Technique
,”
Int. J. Geotech. Eng.
, pp. 
1
12
, https://doi.org/10.1080/19386362.2017.1339763
15.
Pandey
,
L. M. S.
,
Shukla
,
S. K.
and
Habibi
,
D.
,
2017
, “
Resistivity Profiles of Perth Soil in Australia in Leak-detection Test
,”
Geotech. Res.
, Vol. 
4
, No. 
4
, pp. 
214
221
, https://doi.org/10.1680/jgere.17.00014
16.
Rowe
,
R. K.
,
Quigley
,
R. M.
,
Brachman
,
R. W. I.
, and
Booker
,
J. R.
,
2004
,
Barrier Systems for Waste Disposal Facilities
, 2nd ed.,
CRC Press
,
Boca Raton, FL
, 600p.
17.
Shukla
,
S. K.
,
2016
,
An Introduction to Geosynthetic Engineering
,
CRC Press
,
Boca Raton, FL
, 472p.
18.
Shukla
,
S. K.
and
Yin
,
J.-H.
,
2006
,
Fundamentals of Geosynthetic Engineering
,
CRC Press
,
Boca Raton, FL
, 432p.
19.
Xie
,
H.
,
Jiang
,
Y.
,
Zhang
,
C.
, and
Feng
,
S.
,
2015
, “
An Analytical Model for Volatile Organic Compound Transport through a Composite Liner Consisting of a Geomembrane, a GCL, and a Soil Liner
,”
Environ. Sci. Pollut. Res. Int.
, Vol. 
22
, No. 
4
, pp. 
2824
2836
, https://doi.org/10.1007/s11356-014-3565-5
20.
Xie
,
H.
,
Zhang
,
C.
,
Sedighi
,
M.
,
Thomas
,
H. R.
, and
Chen
,
Y.
,
2015
, “
An Analytical Model for Diffusion of Chemicals under Thermal Effects in Semi-Infinite Porous Media
,”
Comput. Geotech.
, Vol. 
69
, pp. 
329
337
, https://doi.org/10.1016/j.compgeo.2015.06.012
This content is only available via PDF.
You do not currently have access to this content.