Abstract

High-accuracy deformation measurement is an essential part of geotechnical model testing, in which fiber-optic sensors have great potentialities. In this study, a 1-g plane-strain model test was performed to investigate the feasibility of using fiber Bragg grating (FBG) strain-sensing arrays for monitoring soil deformation beneath a strip footing. The FBG array with specially made anchors was designed to enhance the fiber-soil interfacial bond and, hence, to improve the measurement quality. Three arrays were embedded horizontally within the soil to monitor internal linear strains, while digital photography-based particle image velocimetry (PIV) was employed to obtain superficial displacement and strain fields. Test results show that the strains captured by FBGs were comparable with equivalent strains determined via PIV analyses in terms of strain development, which reflected the evolution of soil deformation under incremental loads. Finally, the benefits and drawbacks of anchored FBG arrays for monitoring laboratory-scale models were discussed, with the conclusion being that they are capable of capturing internal strains or a strain profile of soil with low noise and high resolution, but there has to be a trade-off between robustness and sensitivity.

References

1.
Abu-Farsakh
,
M.
,
Chen
,
Q.
,
Sharma
,
R.
, and
Zhang
,
X.
,
2008
, “
Large-Scale Model Footing Tests on Geogrid-Reinforced Foundation and Marginal Embankment Soils
,”
Geotech. Test. J.
, Vol. 
31
, No. 
5
, pp. 
413
423
, https://doi.org/10.1520/GTJ101465
2.
ASTM F3079-14
2014
,
Standard Practice for Use of Distributed Optical Fiber Sensing Systems for Monitoring the Impact of Ground Movements during Tunnel and Utility Construction on Existing Underground Utilities
,
ASTM International
,
West Conshohocken, PA
, www.astm.org
3.
Cocjin
,
M.
and
Kusakabe
,
O.
,
2013
, “
Centrifuge Observations on Combined Loading of a Strip Footing on Dense Sand
,”
Géotechnique
, Vol. 
63
, No. 
5
, pp. 
427
433
, https://doi.org/10.1680/geot.11.P.075
4.
Damiano
,
E.
,
Avolio
,
B.
,
Minardo
,
A.
,
Olivares
,
L.
,
Picarelli
,
L.
, and
Zeni
,
L.
,
2017
, “
A Laboratory Study on the Use of Optical Fibers for Early Detection of Pre-failure Slope Movements in Shallow Granular Soil Deposits
,”
Geotech. Test. J.
, Vol. 
40
, No. 
4
, pp. 
529
541
, https://doi.org/10.1520/GTJ20160107
5.
Das
,
B. M.
,
2009
,
Principles of Geotechnical Engineering
, 7th ed.,
Cengage Learning
,
Boston, MA
, 704p.
6.
Doherty
,
P.
,
Igoe
,
D.
,
Murphy
,
G.
,
Gavin
,
K.
,
Preston
,
J.
,
McAvoy
,
C.
,
Byrne
,
B. W.
,
Mcadam
,
R.
,
Burd
,
H. J.
,
Houlsby
,
G. T.
,
Martin
,
C. M.
,
Zdravković
,
L.
,
Taborda
,
D. M. G.
,
Potts
,
D. M.
,
Jardine
,
R. J.
,
Sideri
,
M.
,
Schroeder
,
F. C.
,
Muir Wood
,
A.
,
Kallehave
,
D.
, and
Skov Gretlund
,
J.
,
2015
, “
Field Validation of Fibre Bragg Grating Sensors for Measuring Strain on Driven Steel Piles
,”
Géotech. Lett.
, Vol. 
5
, No. 
2
, pp. 
74
79
, https://doi.org/10.1680/geolett.14.00120
7.
Hauswirth
,
D.
,
Iten
,
M.
,
Richli
,
R.
, and
Puzrin
,
A. M.
,
2010
, “
Fibre Optic Cable and Micro-Anchor Pullout Tests in Sand
,” presented at the
Seventh International Conference on Physical Modelling in Geotechnics (ICPMG 2010)
, Zurich, Switzerland,
CRC Press
,
Boca Raton, FL
.
8.
Hoepffner
,
R.
,
2008
, “
Distributed Fiber Optic Strain Sensing in Hydraulic Concrete and Earth Structures–Measuring Theory and Field Investigations on Dams and Landslides
,” Ph.D. thesis,
Technische Universität München
, Munich, Germany.
9.
Hossain
,
M. S.
and
Fourie
,
A.
,
2013
, “
Stability of a Strip Foundation on a Sand Embankment over Mine Tailings
,”
Géotechnique
, Vol. 
63
, No. 
8
, pp. 
641
650
, https://doi.org/10.1680/geot.11.P.111
10.
Huang
,
A.-B.
,
Lee
,
J.-T.
,
Ho
,
Y.-T.
,
Chiu
,
Y.-F.
, and
Cheng
,
S.-Y.
,
2012
, “
Stability Monitoring of Rainfall-Induced Deep Landslides through Pore Pressure Profile Measurements
,”
Soils Found.
, Vol. 
52
, No. 
4
, pp. 
737
747
, https://doi.org/10.1016/j.sandf.2012.07.013
11.
Hussaini
,
S. K.
,
Indraratna
,
B.
, and
Vinod
,
J. S.
,
2015
, “
Application of Optical-Fiber Bragg Grating Sensors in Monitoring the Rail Track Deformations
,”
Geotech. Test. J.
, Vol. 
38
, No. 
4
, pp. 
387
396
, https://doi.org/10.1520/GTJ20140123
12.
Iten
,
M.
,
2011
, “
Novel Applications of Distributed Fiber-Optic Sensing in Geotechnical Engineering
,” Ph.D. thesis,
ETH Zürich
, Zurich, Switzerland.
13.
Lee
,
J.-T.
,
Tien
,
K.-C.
,
Ho
,
Y.-T.
, and
Huang
,
A.-B.
,
2011
, “
A Fiber Optic Sensored Triaxial Testing Device
,”
Geotech. Test. J.
, Vol. 
34
, No. 
2
, pp. 
103
111
, https://doi.org/10.1520/GTJ102825
14.
Li
,
F.
,
Zhu
,
H.-H.
,
Zhang
,
C.-C.
, and
Shi
,
B.
,
2017
, “
Experimental Study on Feasibility of Fiber Bragg Grating-Based Foundation Deformation Monitoring (in Chinese)
,”
J. Zhejiang Univ. Eng. Sci.
, Vol. 
51
, No. 
1
, pp. 
204
211
.
15.
Lienhart
,
W.
,
2015
, “
Case Studies of High-Sensitivity Monitoring of Natural and Engineered Slopes
,”
J. Rock Mech. Geotech. Eng.
, Vol. 
7
, No. 
4
, pp. 
379
384
, https://doi.org/10.1016/j.jrmge.2015.04.002
16.
Madabhushi
,
S. S. C.
and
Haigh
,
S. K.
,
2015
, “
Investigating the Changing Deformation Mechanism beneath Shallow Foundations
,”
Géotechnique
, Vol. 
65
, No. 
8
, pp. 
684
693
, https://doi.org/10.1680/geot.14.P.226
17.
Mcmahon
,
B. T.
,
Haigh
,
S. K.
, and
Bolton
,
M. D.
,
2013
, “
Optimal Displacement Mechanisms beneath Shallow Foundations on Linear-Elastic Perfectly Plastic Soil
,”
Géotechnique
, Vol. 
63
, No. 
16
, pp. 
1447
1450
, https://doi.org/10.1680/geot.13.T.002
18.
Michalowski
,
R. L.
and
Shi
,
L.
,
2003
, “
Deformation Patterns of Reinforced Foundation Sand at Failure
,”
J. Geotech. Geoenviron. Eng.
, Vol. 
129
, No. 
5
, pp. 
439
449
, https://doi.org/10.1061/(ASCE)1090-0241(2003)129:6(439)
19.
Olivares
,
L.
,
Damiano
,
E.
,
Greco
,
R.
,
Zeni
,
L.
,
Picarelli
,
L.
,
Minardo
,
A.
,
Guida
,
A.
, and
Bernini
,
R.
,
2009
, “
An Instrumented Flume to Investigate the Mechanics of Rainfall-Induced Landslides in Unsaturated Granular Soils
,”
Geotech. Test. J.
, Vol. 
32
, No. 
2
, pp. 
108
118
, https://doi.org/10.1520/GTJ101366
20.
Othonos
,
A.
and
Kalli
,
K.
,
1999
,
Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing
,
Artech House
,
London, United Kingdom
, 433p.
21.
Schenato
,
L.
,
2017
, “
A Review of Distributed Fibre Optic Sensors for Geo-Hydrological Applications
,”
Appl. Sci.
, Vol. 
7
, No. 
9
, 896, https://doi.org/10.3390/app7090896
22.
Schenato
,
L.
,
Palmieri
,
L.
,
Camporese
,
M.
,
Bersan
,
S.
,
Cola
,
S.
,
Pasuto
,
A.
,
Galtarossa
,
A.
,
Salandin
,
P.
, and
Simonini
,
P.
,
2017
, “
Distributed Optical Fibre Sensing for Early Detection of Shallow Landslides Triggering
,”
Sci. Rep.
, Vol. 
7
,
14686
, https://doi.org/10.1038/s41598-017-12610-1
23.
Stanier
,
S. A.
,
Blaber
,
J.
,
Take
,
W. A.
, and
White
,
D. J.
,
2016
, “
Improved Image-Based Deformation Measurement for Geotechnical Applications
,”
Can. Geotech. J.
, Vol. 
53
, No. 
5
, pp. 
727
739
, https://doi.org/10.1139/cgj-2015-0253
24.
Take
,
W. A.
,
2015
, “
Thirty-Sixth Canadian Geotechnical Colloquium: Advances in Visualization of Geotechnical Processes through Digital Image Correlation
,”
Can. Geotech. J.
, Vol. 
52
, No. 
9
, pp. 
1199
1220
, https://doi.org/10.1139/cgj-2014-0080
25.
Toyosawa
,
Y.
,
Itoh
,
K.
,
Kikkawa
,
N.
,
Yang
,
J.-J.
, and
Liu
,
F.
,
2013
, “
Influence of Model Footing Diameter and Embedded Depth on Particle Size Effect in Centrifugal Bearing Capacity Tests
,”
Soils Found.
, Vol. 
53
, No. 
2
, pp. 
349
356
, https://doi.org/10.1016/j.sandf.2012.11.027
26.
Vahedifard
,
F.
and
Robinson
,
J. D.
,
2016
, “
Unified Method for Estimating the Ultimate Bearing Capacity of Shallow Foundations in Variably Saturated Soils under Steady Flow
,”
J. Geotech. Geoenviron. Eng.
, Vol. 
142
, No. 
4
, 4015095, https://doi.org/10.1061/(ASCE)GT.1943-5606.0001445
27.
Wang
,
B.-J.
,
Li
,
K.
,
Shi
,
B.
, and
Wei
,
G.-Q.
,
2009
, “
Test on Application of Distributed Fiber Optic Sensing Technique into Soil Slope Monitoring
,”
Landslides
, Vol. 
6
, No. 
1
, pp. 
61
68
, https://doi.org/10.1007/s10346-008-0139-y
28.
Weng
,
X.
,
Zhao
,
Y.
,
Lou
,
Y.
, and
Zhan
,
J.
,
2016
, “
Application of Fiber Bragg Grating Strain Sensors to a Centrifuge Model of a Jacked Pile in Collapsible Loess
,”
Geotech. Test. J.
, Vol. 
39
, No. 
3
, pp. 
362
370
, https://doi.org/10.1520/GTJ20150076
29.
White
,
D. J.
,
Take
,
W. A.
, and
Bolton
,
M. D.
,
2003
, “
Soil Deformation Measurement Using Particle Image Velocimetry (PIV) and Photogrammetry
,”
Géotechnique
, Vol. 
53
, No. 
7
, pp. 
619
631
, https://doi.org/10.1680/geot.53.7.619.37383
30.
Xu
,
D.-S.
,
Borana
,
L.
, and
Yin
,
J.-H.
,
2014
, “
Measurement of Small Strain Behavior of a Local Soil by Fiber Bragg Grating-Based Local Displacement Transducers
,”
Acta Geotech.
, Vol. 
9
, No. 
6
, pp. 
935
943
, https://doi.org/10.1007/s11440-013-0267-y
31.
Zhang
,
C.-C.
,
Zhu
,
H.-H.
, and
Shi
,
B.
,
2016
, “
Role of the Interface between Distributed Fibre Optic Strain Sensor and Soil in Ground Deformation Measurement
,”
Sci. Rep.
, Vol. 
6
, 36469, https://doi.org/10.1038/srep36469
32.
Zhang
,
C.-C.
,
Zhu
,
H.-H.
,
Shi
,
B.
, and
She
,
J.-K.
,
2014
, “
Interfacial Characterization of Soil-Embedded Optical Fiber for Ground Deformation Measurement
,”
Smart Mater. Struct.
, Vol. 
23
, No. 
9
, 95022, https://doi.org/10.1088/0964-1726/23/9/095022
33.
Zhu
,
H.-H.
,
Shi
,
B.
,
Yan
,
J.-F.
,
Zhang
,
J.
, and
Wang
,
J.
,
2015
, “
Investigation of the Evolutionary Process of a Reinforced Model Slope Using a Fiber-Optic Monitoring Network
,”
Eng. Geol.
, Vol. 
186
, pp. 
34
43
, https://doi.org/10.1016/j.enggeo.2014.10.012
34.
Zhu
,
H.-H.
,
Shi
,
B.
, and
Zhang
,
C.-C.
,
2017
, “
FBG-Based Monitoring of Geohazards: Current Status and Trends
,”
Sensors
, Vol. 
17
, No. 
3
, 452, https://doi.org/10.3390/s17030452
This content is only available via PDF.
You do not currently have access to this content.