Abstract

This article investigates the development of volumetric strain nonuniformities in sand specimens subjected to drained cyclic triaxial compression loading. The assessment is performed by comparing volumetric strain determinations using an external volume gauge and local axial and radial strain measurements mounted on the center of the specimen. The experimental investigation has been performed for both frictional and enlarged lubricated ends on sand specimens of different densities and fabricated using both moist tamping and dry deposition techniques. It will be shown that considerable discrepancies between the global and local volumetric determination arise even in specimens tested with enlarged lubricated ends, as a result of different volumetric tendencies (contraction or dilation) of the center and the boundaries of the specimens. These discrepancies are more pronounced for dense specimens cycled at high average stress ratios and amplitudes. The influence of three different assumptions employed to account for the specimen’s deformed profile (namely the right cylinder, parabolic, and sinusoidal profile) on the local volumetric determinations will be also assessed. Some recommendations for the need for local volumetric measurements will be attempted.

References

1.
Bishop
,
A. W.
and
Green
,
G. E.
,
1965
, “
The Influence of End Restraint on the Compression Strength of a Cohesionless Soil
,”
Géotechnique
, Vol. 
15
, No. 
3
, pp. 
243
266
, https://doi.org/10.1680/geot.1965.15.3.243
2.
Bishop
,
A. W.
and
Wesley
,
L. D.
,
1975
, “
A Hydraulic Triaxial Apparatus for Controlled Stress Path Testing
,”
Géotechnique
, Vol. 
25
, No. 
4
, pp. 
657
670
.
3.
Colliat-Dangus
,
J. L.
,
Desrues
,
J.
, and
Foray
,
P.
,
1988
, “
Triaxial Testing of Granular Soil under Elevated Cell Pressure
,”
Advanced Triaxial Testing of Soil and Rock, ASTM STP977
,
ASTM International
,
West Conshohocken, PA
, 900p., https://doi.org/10.1520/STP29082S
4.
Corti
,
R.
,
Diambra
,
A.
,
Wood
,
D. M.
,
Escribano
,
D. E.
, and
Nash
,
D. F.
,
2016
, “
Memory Surface Hardening Model for Granular Soils under Repeated Loading Conditions
,”
J. Eng. Mech.
, Vol. 
142
, No. 
12
, 04016102, https://doi.org/10.1061/(ASCE)EM.1943-7889.0001174
5.
Cuccovillo
,
T.
and
Coop
,
M. R.
,
1997
, “
The Measurement of Local Axial Strains in Triaxial Tests Using LVDTs
,”
Géotechnique
, Vol. 
47
, No. 
1
, pp. 
167
171
, https://doi.org/10.1680/geot.1997.47.1.167
6.
Desrues
,
J.
,
1990
, “
Shear Band Initiation in Granular Materials: Experimentation and Theory
,”
Geomaterials: Constitutive Equations and Modelling
,
CRC Press
,
Boca Raton, FL
, pp. 
283
310
.
7.
Desrues
,
J.
,
1984
, “
La Localisation de la Deformation dans les Materiaux Granulaires
,” Ph.D. dissertation,
Université Scientifique et Medicale de Grnoble
, Grenoble, France.
8.
Desrues
,
J.
,
Bésuelle
,
P.
, and
Lewis
,
H.
,
2007
, “
Strain Localization in Geomaterials
,”
Geol. Soc., London
, Vol. 
289
, pp. 
47
73
, https://doi.org/10.1144/SP289.4
9.
Diambra
,
A.
,
Ibraim
,
E.
,
Russell
,
A. R.
, and
Muir Wood
,
D.
,
2011
, “
Modelling the Undrained Response of Fiber Reinforced Sands
,”
Soils Found.
, Vol. 
51
, No. 
4
, pp. 
625
636
, https://doi.org/10.3208/sandf.51.625
10.
Doanh
,
T.
and
Ibraim
,
E.
,
2000
, “
Minimum Undrained Strength of Hostun RF Sand
,”
Géotechnique
, Vol. 
50
, No. 
4
, pp. 
377
392
, https://doi.org/10.1680/geot.2000.50.4.377
11.
Escribano
,
D. E.
,
2014
, “
Evolution of Stiffness and Deformation of Hostun Sand under Drained Cyclic Loading
,” Ph.D. thesis,
University of Bristol
, Bristol, United Kingdom.
12.
Flavigny
,
E.
,
Desrues
,
J.
, and
Palayer
,
B.
,
1990
, “
Le Sable d’Hostun RF
,”
Rev. Fr. Géotech.
, Vol. 
53
, pp. 
67
70
, https://doi.org/10.1051/geotech/1990053067
13.
Germaine
,
J. T.
and
Ladd
,
C. C.
,
1988
, “
Triaxial Testing of Saturated Cohesive Soils
,”
Advanced Triaxial Testing for Soil and Rock, ASTM STP977
,
ASTM International
,
West Conshohocken, PA
, pp. 
421
459
, https://doi.org/10.1520/STP29091S
14.
Goto
,
S.
and
Tatsuoka
,
F.
,
1988
, “
Effects of End Conditions on Triaxial Compressive Strength for Cohesionless Soil
,”
Advanced Triaxial Testing of Soil and Rock, ASTM STP977
,
ASTM International
,
West Conshohocken, PA
, pp. 
692
705
, https://doi.org/10.1520/STP29108S
15.
de Groot
,
M. B.
,
Bolton
,
M. D.
,
Foray
,
P.
,
Meijers
,
P.
,
Palmer
,
A. C.
,
Sandven
,
R.
,
Sawicki
,
A.
, and
Teh
,
T. C.
,
2006
, “
Physics of Liquefaction Phenomena around Marine Structures
,”
J. Waterw. Port Coastal Ocean Eng.
, Vol. 
132
, No. 
4
, pp. 
227
243
.
16.
Ibraim
,
E.
and
Fourmont
,
S.
,
2006
, “
Behaviour of Sand Reinforced with Fibres
,”
Soil Stress-Strain Behaviour: Measurement, Modelling and Analysis
,
Springer
,
Berlin, Germany
, pp. 
807
818
.
17.
Ishihara
,
K.
,
1993
, “
Liquefaction and Flow Failure during Earthquakes
,”
Géotechnique
, Vol. 
43
, No. 
3
, pp. 
349
451
, https://doi.org/10.1680/geot.1993.43.3.351
18.
Kirkpatrick
,
W. M.
and
Belshaw
,
D. J.
,
1968
, “
On the Interpretation of the Triaxial Test
,”
Géotechnique
, Vol. 
18
, No. 
3
, pp. 
336
350
, https://doi.org/10.1680/geot.1968.18.3.336
19.
Klotz
,
E. U.
and
Coop
,
M. R.
,
2002
, “
On the Identification of Critical State Lines for Sands
,”
Geotech. Test. J.
, Vol. 
25
, No. 
3
, pp. 
288
301
, https://doi.org/10.1520/GTJ11090J
20.
Ladd
,
R. S.
,
1978
, “
Preparing Test Specimens Using Undercompaction
,”
Geotech. Test. J.
, Vol. 
1
, No. 
1
, pp. 
16
23
, https://doi.org/10.1520/GTJ10364J
21.
Linton
,
P. F.
,
McVay
,
M. C.
, and
Bloomquist
,
D.
,
1988
, “
Measurement of Deformation in the Standard Triaxial Environment with a Comparison of Local versus Global Measurements on a Fine, Fully Drained Sand
,”
Advanced Triaxial Testing of Soil and Rock, ASTM STP977
,
ASTM International
,
West Conshohocken, PA
, pp. 
202
215
, https://doi.org/10.1520/STP29079S
22.
Liu
,
X.
,
Longtan
,
S.
, and
Xiaoxia
,
G.
,
2013
, “
Local Data Analysis for Eliminating End Restraint of Triaxial Specimen
,”
Trans. Tianjin Univ.
, Vol. 
19
, No. 
5
, pp. 
372
380
, https://doi.org/10.1007/s12209-013-2000-1
23.
Rowe
,
P. W.
and
Barden
,
L.
,
1964
, “
The Importance of Free-Ends in the Triaxial Test
,”
J. Soil Mech. Found. Div.
, Vol. 
90
, No. 
1
, pp. 
1
27
.
24.
Sadek
,
T.
,
2006
, “
The Multiaxial Behaviour and Elastic Stiffness of Hostun Sand
,” Ph.D. thesis,
University of Bristol
, Bristol, United Kingdom.
25.
Tatsuoka
,
F.
and
Ishihara
,
K.
,
1974
, “
Yielding of Sand in Triaxial Compression
,”
Soils Found.
, Vol. 
14
, No. 
2
, pp. 
63
76
, https://doi.org/10.3208/sandf1972.14.2_63
26.
Vardoulakis
,
I.
and
Drescher
,
A.
,
1985
, “
Behaviour of Granular Soil Specimens in the Triaxial Compression Test
,”
Developments in Soil Mechanics and Foundation Engineering, Vol. 2
,
Elsevier
,
Amsterdam, the Netherlands
, pp. 
215
252
.
27.
Zhang
,
H.
and
Garga
,
V. K.
,
1997
, “
Quasi-Steady State: A Real Behaviour?
Can. Geotech. J.
, Vol. 
34
, No. 
5
, pp. 
749
761
, https://doi.org/10.1139/t97-046
This content is only available via PDF.
You do not currently have access to this content.