Abstract

As a new environmentally friendly and sustainable technique for soil improvement, microbial-induced calcite precipitation (MICP) has been studied widely. A suitable sample preparation mold is the first step to prepare MICP treatment. The purpose of this study is to develop a rigid full-contact mold to prepare larger biobeam specimens for MICP treatments with an immersing method. Four different molds were developed, including a plastic beam rigid mold without a cover, a full-contact flexible mold, a rigid full-contact mold with geotextiles, and a rigid full-contact mold with filter paper. Beam-shaped specimens with different dimensions were treated with the four molds in the MICP process. A four-point bending test and a split tensile strength test were conducted to evaluate the flexural behavior of MICP-treated specimens from the four sample preparation molds. The results indicated that an MICP-treated sample prepared by the rigid full-contact mold with geotextiles can form the best beam shape and the most uniform calcite precipitation inside the sample. Additionally, the biobeam made by the rigid full-contact mold with geotextiles achieved the best mechanical properties. The flexural strength of the biobeam made by the rigid full-contact mold was 1,125 kPa at a failure flexural strain of 1.5 %, and the split tensile strength was 368 kPa with a failure tensile strain of 1.8 %.

References

1.
Achal
,
V.
,
Mukerjee
,
A.
, and
Reddy
,
M. S.
,
2013
, “
Biogenic Treatment Improves the Durability and Remediates the Cracks of Concrete Structures
,”
Constr. Build. Mater.
, Vol. 
48
, pp. 
1
5
, https://doi.org/10.1016/j.conbuildmat.2013.06.061
2.
ASTM D6272-17
2017
,
Standard Test Method for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials by Four-Point Bending
,
ASTM International
,
West Conshohocken, PA
, www.astm.org
3.
ASTM C496/C496M-11
2004
,
Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens
,
ASTM International
,
West Conshohocken, PA
, www.astm.org
4.
Bernardi
,
D.
,
DeJong
,
J. T.
,
Montoya
,
B. M.
, and
Martinez
,
B. C.
,
2014
, “
Bio-Bricks: Biologically Cemented Sandstone Bricks
,”
Constr. Build. Mater.
, Vol. 
55
, pp. 
462
469
., https://doi.org/10.1016/j.conbuildmat.2014.01.019
5.
DeJong
,
J. T.
,
Mortensen
,
B. M.
,
Martinez
,
B. C.
, and
Nelson
,
D. C.
,
2010
, “
Bio-Mediated Soil Improvement
,”
Ecol. Eng.
, Vol. 
36
, No. 
2
, pp. 
197
210
, https://doi.org/10.1016/j.ecoleng.2008.12.029
6.
DeJong
J. T.
,
Soga
,
K.
,
Kavazanjian
,
E.
,
Burns
,
S.
,
van Paassen
,
L.
,
Al Qabany
,
A.
,
Aydilek
,
A.
,
Bang
,
S. S.
,
Burbank
,
M.
,
Caslake
,
L. F.
, and
Chen
,
C. Y.
,
2013
, “
Biogeochemical Processes and Geotechnical Applications: Progress, Opportunities, and Challenges
,”
Géotechnique
, Vol. 
63
, No. 
4
, pp. 
287
301
, https://doi.org/10.1680/geot.SIP13.P.017
7.
Han
,
Z.
,
Cheng
,
X.
, and
Ma
,
Q.
,
2016
An Experimental Study on Dynamic Response for MICP Strengthening Liquefiable Sands
,”
Earthquake Eng. Eng. Vib.
, Vol. 
15
, No. 
4
, pp. 
673
679
, https://doi.org/10.1007/s11803-016-0357-6
8.
Harkes
,
M. P.
,
Booster
,
J. L.
,
Paassen
,
L. A.
,
Loosdrecht
,
M.
, and
Whiffin
,
V. S.
,
2008
, “
Microbial Induced Carbonate Precipitation as Ground Improvement Method—Bacterial Fixation and Empirical Correlation CaCO3 vs Strength
,” presented at the
First International Conference on BioGeoCivil Engineering
, Delft, the Netherlands,
Delft University of Technology
,
Delft, the Netherlands
, pp. 
23
25
.
9.
Li
,
M.
,
Li
,
L.
,
Ogbonnaya
,
U.
,
Wen
,
K.
,
Tian
,
A.
, and
Amini
,
F.
,
2016
, “
Influence of Fiber Addition on Mechanical Properties of MICP-Treated Sand
,”
J. Mater. Civ. Eng.
, Vol. 
28
, No. 
4
, 04015166, https://doi.org/10.1061/(ASCE)MT.1943-5533.0001442
10.
Martin
,
D.
,
Dodds
,
K.
,
Ngwenya
,
B.
,
Butler
,
I.
, and
Elphick
,
S.
,
2012
, “
Inhibition of Sporosarcina Pasteurii under Anoxic Conditions: Implications for Subsurface Carbonate Precipitation and Remediation via Ureolysis
,”
Environ. Sci. Technol.
, Vol. 
46
, No. 
15
, pp. 
8351
8355
, https://doi.org/10.1021/es3015875
11.
Martinez
,
B. C.
,
DeJong
,
J. T.
,
Ginn
,
T. R.
,
Montoya
,
B. M.
,
Barkouki
,
T. H.
,
Hunt
,
C.
,
Tanyu
,
B.
, and
Major
,
D.
,
2013
, “
Experimental Optimization of Microbially-Induced Carbonate Precipitation for Soil Improvement
,”
J. Geotech. Geoenviron. Eng.
, Vol. 
139
, No. 
4
, pp. 
587
598
, https://doi.org/10.1061/(ASCE)GT.1943-5606.0000787
12.
Whiffin
,
V. S.
,
van Paassen
,
L. A.
, and
Harkes
,
M. P.
,
2007
, “
Microbial Carbonate Precipitation as a Soil Improvement Technique
,”
Geomicrobiol. J.
, Vol. 
24
, No. 
5
, pp. 
1
7
, https://doi.org/10.1080/01490450701436505
13.
Zhao
,
Q.
,
Li
,
L.
,
Li
,
C.
,
Li
,
M.
,
Amini
,
F.
, and
Zhang
,
H.
,
2014
, “
Factors Affecting Improvement of Engineering Properties of MICP-Treated Soil Catalyzed by Bacteria and Urease
,”
J. Mater. Civ. Eng.
, Vol. 
26
, No. 
12
, pp. 04014094-1:10, https://doi.org/10.1061/(ASCE)MT.1943-5533.0001013
14.
Zhao
,
Q.
,
Li
,
L.
,
Li
,
C.
,
Zhang
,
H.
, and
Amini
,
F.
,
2014
, “
A Full Contact Flexible Mold for Preparing Samples Based on Microbial-Induced Calcite Precipitation Technology
,”
Geotech. Test. J.
, Vol. 
37
, No. 
5
, pp. 
917
921
, https://doi.org/10.1520/GTJ20130090
This content is only available via PDF.
You do not currently have access to this content.