Abstract

This study documents the development of a procedure for the identification of the depth and type of ballast fouling using the time domain reflectometry (TDR) technique. Ballast fouling leads to a reduction in the bearing capacity of the railway substructure, a decrease in the drainage capacity, and an increase in track deformation. As a consequence of these detrimental effects, rail tracks lose load capacity, ride comfort deteriorates, and trains may ultimately derail. The determination of type and extent of ballast fouling may be used to assess the expected life of rail track and to plan maintenance operations. TDR waveforms of variably fouled ballast and subballast layers were evaluated in the lab to yield relative dielectric permittivity and electrical conductivity and to thus characterize the effect of ballast gradation, mineralogy, and water content on electromagnetic response. Strong relationships between depth of fouling, volumetric water content, and relative dielectric permittivity were developed. These results were then expanded to the interpretation of ground penetrating radar (GPR) inspection and to quantify the level of fouling in larger-scale maintenance operations. The proposed technique can be complementary to GPR as it reduces the uncertainty in determining the depth and type of fouling when using GPR alone.

References

1.
Ahlf
,
R. E.
,
2011
, “
Maintaining, Rehabilitation, and Upgrading Conventional Railroad Track- Ballast
,” Unpublished short course, University of Wisconsin-Madison, Madison, WI.
2.
Al-Qadi
,
I.
,
Xie
,
W.
, and
Roberts
,
R.
,
2008
, “
Scattering Analysis of Ground-Penetrating Radar Data to Qualify Railroad Ballast Contamination
,”
NDT & E Int.
, Vol. 
41
, No. 
6
, pp. 
441
447
, https://doi.org/10.1016/j.ndteint.2008.03.004
3.
Annan
,
A. P.
,
2005
, “
Ground-Penetrating Radar
,”
Near Surface Geophysics
,
Butler
D. K.
, Ed.,
Society of Exploration Geophysicists
,
Tulsa, OK
, pp. 
357
438
.
4.
Archie
,
G. E.
,
1942
, “
The Electrical Resistivity Log as an Aid in Determining Some Reservoir Characteristics
,”
Trans. AIME
, Vol. 
146
, No. 
1
, pp. 
54
62
, https://doi.org/10.2118/942054-G
5.
AREMA
2010
, “
AREMA Manual for Railway Engineering—Ballast Gradations
,” American Railway Engineering and Maintenance-of-Way Association, Lanham, MD, pp. 
1-2-1
1-2-27
.
6.
Association of American Railroads
2012
, “
Total Annual Spending 2011 Data
,” The Association of American Roads, https://my.aar.org/_layouts/15/WopiFrame.aspx?sourcedoc={b19ea8c6-7b9e-4e15-864e-eefb9bd7cfc1}&action=view
7.
ASTM D2487-11
2011
,
Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System)
,
ASTM International
,
West Conshohocken, PA
, www.astm.org
8.
ASTM D422-63
2007
,
Test Method for Particle-Size Analysis of Soils
,
ASTM International
,
West Conshohocken, PA
, www.astm.org
9.
ASTM D4318-10
2010
,
Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils
,
ASTM International
,
West Conshohocken, PA
, www.astm.org
10.
ASTM D6913
2009
,
Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis
,
ASTM International
,
West Conshohocken, PA
, www.astm.org
11.
ASTM D854-14
2000
,
Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer
,
ASTM International
,
West Conshohocken, PA
, www.astm.org
12.
Baker
,
G. S.
,
Jordan
,
T. E.
, and
Pardy
,
J.
,
2007
, “
An Introduction to Ground Penetrating Radar (GPR)
,”
Stratigraphic Analyses Using GPR, Vol. 432
,
Geological Society of America
,
Boulder, CO
, pp. 
1
18
.
13.
Benson
,
C. H.
and
Bosscher
,
P. J.
,
1999
, “
Time-Domain Reflectometry (TDR) in Geotechnics: A Review
,”
Nondestructive and Automated Testing for Soil and Rock Properties, ASTM STP1350
,
ASTM International
,
West Conshohocken, PA
, pp. 
113
136
, https://doi.org/10.1520/STP13313S
14.
Burger
,
H. R.
,
Sheehan
,
A. F.
, and
Jones
,
C. H.
,
2006
,
Introduction to Applied Geophysics
,
W.W. Norton and Company
,
New York, NY
, 600p.
15.
Chen
,
D. H.
,
Wang
,
J. N.
, and
Bilyeu
,
J.
,
2001
, “
Application of Dynamic Cone Penetrometer in Evaluation of Base and Subgrade Layers
,”
Transp. Res. Rec.
, Vol. 
1764
, pp. 
1
10
, https://doi.org/10.3141/1764-01
16.
Clark
,
M. R.
,
Gillespie
,
R.
,
Kemp
,
T.
,
McCann
,
D. M.
, and
Forde
,
M. C.
,
2001
, “
Electromagnetic Properties of Railway Ballast
,”
NDT & E Int.
, Vol. 
34
, No. 
5
, pp. 
305
311
, https://doi.org/10.1016/S0963-8695(00)00006-2
17.
Dalton
,
F. N.
,
Herkelrath
,
W. N.
,
Rawlins
,
D. S.
, and
Rhoades
,
J. D.
,
1984
, “
Time Domain Reflectometry: Simultaneous Measurement of Soil Water Content and Electrical Conductivity with a Single Probe
,”
Science
, Vol. 
224
, No. 
4652
, pp. 
989
990
, https://doi.org/10.1126/science.224.4652.989
18.
Ebrahimi
,
A.
,
2011
, “
Deformational Behavior of Fouled Railway Ballast
,” Ph.D. thesis,
Department of Civil and Environmental Engineering, University of Wisconsin-Madison
, Madison, WI.
19.
Feldman
,
F.
and
Nissen
,
D.
,
2002
, “
Alternative Testing Method for the Measurement of Ballast Fouling: Percentage Void Contamination
,” presented at the
Conference on Railway Engineering
, Wollongong, Australia,
Railway Technical Society of Australia
,
Canberra, Australia
, pp. 
101
109
.
20.
Ferré
,
P. A.
,
Rudolph
,
D. L.
, and
Kachanoski
,
R. G.
,
1996
, “
Spatial Averaging of Water Content by Time Domain Reflectometry: Implications for Twin Rod Probes with and without Dielectric Coatings
,”
Water Resour. Res.
, Vol. 
32
, No. 
2
, pp. 
271
279
, https://doi.org/10.1029/95WR02576
21.
Fratta
,
D.
,
Alshibli
,
K. A.
,
Tanner
,
W. M.
, and
Roussel
,
L.
,
2005
, “
Combined TDR and P-Wave Velocity Measurements for the Determination of In Situ Soil Density-Experimental Study
,”
Geotech. Test. J.
, Vol. 
28
, No. 
6
, pp. 
553
563
, https://doi.org/10.1520/GTJ12293
22.
Giese
,
K.
and
Tiemann
,
R.
,
1975
, “
Determination of the Complex Permittivity from Thin-Sample Time Domain Reflectometry, Improved Analysis of the Step Response Waveform
,”
Adv. Mol. Relax. Process.
, Vol. 
7
, No. 
1
, pp. 
45
59
, https://doi.org/10.1016/0001-8716(75)80013-7
23.
Herkelrath
,
W. N.
,
Hamburg
,
S. P.
, and
Murphy
,
F.
,
1991
, “
Automatic, Real-Time Monitoring of Soil Moisture in a Remote Field Area with Time Domain Reflectometry
,”
Water Resour. Res.
, Vol. 
27
, No. 
5
, pp. 
857
864
, https://doi.org/10.1029/91WR00311
24.
Herrick
,
J. E.
and
Jones
,
T. L.
,
2002
, “
A Dynamic Cone Penetrometer for Measuring Soil Penetration Resistance
,”
Soil Sci. Soc. Am. J.
, Vol. 
66
, pp. 
1320
1324
, https://doi.org/10.2136/sssaj2002.1320
25.
Hesse
,
D. E.
,
Tinjum
,
J. M.
, and
Warren
,
B. J.
,
2014
, “
Impact of Increasing Freight Loads on Rail Substructure from Fracking Sand Transport
,”
Transp. Geotech.
, Vol. 
1
, No. 
4
, pp. 
241
256
, https://doi.org/10.1016/j.trgeo.2014.06.003
26.
Huang
,
H.
,
Tutumluer
,
E.
, and
Dombrow
,
W.
,
2009
, “
Laboratory Characterization of Fouled Railroad Ballast Behavior
,”
Transp. Res. Rec.
, Vol. 
2117
, pp. 
93
101
, https://doi.org/10.3141/2117-12
27.
Hyslip
,
J. P.
,
Smith
,
S. S.
,
Olhoeft
,
G. R.
, and
Selig
,
E. T.
,
2003
, “
Assessment of Railway Track Substructure Condition Using Ground Penetrating Radar
,”
presented at the AREMA Annual Conference
, Chicago, IL,
American Railway Engineering and Maintenance-of-Way Association
,
Lanham, MD
, pp. 
1
20
.
28.
Indraratna
,
B.
,
Ngo
,
N. T.
, and
Rujikiatkamjorn
,
C.
,
2013
, “
Deformation of Coal Fouled Ballast Stabilized with Geogrid under Cyclic Load
,”
J. Geotech. Geoenviron. Eng.
, Vol. 
139
, No. 
8
, pp. 
1275
1289
, https://doi.org/10.1061/(ASCE)GT.1943-5606.0000864
29.
Indraratna
,
B.
,
Salim
,
W.
, and
Rujikiatkamjorn
,
C.
,
2011
,
Advanced Rail Geotechnology- Ballasted Track
,
Taylor & Francis Group
,
London, United Kingdom
, 432p.
30.
Jones
,
S. B.
,
Wraith
,
J. M.
, and
Or
,
D.
,
2002
, “
Time Domain Reflectometry Measurement Principles and Applications
,”
Hydrol. Process
, Vol. 
16
, No. 
1
, pp. 
141
153
, https://doi.org/10.1002/hyp.513
31.
Klein
,
K. A.
and
Santamarina
,
J. C.
,
2003
, “
Electrical Conductivity in Soils: Underlying Phenomena
,”
J. Environ. Eng. Geophys.
, Vol. 
8
, No. 
4
, pp. 
263
273
, https://doi.org/10.4133/JEEG8.4.263
32.
Knight
,
J. H.
,
1992
, “
Sensitivity of Time Domain Reflectometry Measurements to Lateral Variation in Soil Water Content
,”
Water Resour. Res.
, Vol. 
28
, pp. 
2345
2352
, https://doi.org/10.1029/92WR00747
33.
Knight
,
R. J.
and
Endres
,
A. L.
,
2005
, “
An Introduction to Rock Physics Principles for Near-Surface Geophysics
,”
Near Surface Geophysics
,
Butler
D. K.
, Ed.,
Society of Exploration Geophysicists
,
Tulsa, OK
, pp. 
31
70
.
34.
Ledieu
,
J.
,
De Ridder
,
P.
,
De Clerck
,
P.
, and
Dautrebande
,
S.
,
1986
, “
A Method of Measuring Soil Measuring Soil Moisture by Time-Domain Reflectometry
,”
J. Hydrol.
, Vol. 
88
, Nos. 
3–4
, pp. 
319
328
, https://doi.org/10.1016/0022-1694(86)90097-1
35.
Narayanan
,
R. M.
,
Kumke
,
C. J.
, and
Li
,
D.
,
1999
, “
Railroad Track Monitoring Using Ground-Penetrating Radar: Simulation Study and Field Measurements
,”
SPIE’s International Symposium on Optical Science, Engineering and Instrumentation
,
The International Society for Optics and Photonics
,
Bellingham, WA
, pp. 
243
251
.
36.
O’Connor
,
K. M.
and
Dowding
,
C. H.
,
1999
, “
Geomeasurements by Pulsing TDR Cables and Probes
,”
CRC Press
,
Boca Raton, FL
, 424p.
37.
Palacky
,
G. J.
,
1988
, “
Resistivity Characteristics of Geologic Targets
,”
Electromagnetic Methods in Applied Geophysics, Vol. 1
,
Nabighian
M. C.
, Ed.,
Society of Exploration and Geophysicists
,
Tulsa, OK
, pp. 
53
129
.
38.
Petersen
,
L. W.
,
Thomsen
,
A.
,
Moldrup
,
P.
,
Jacobsen
,
O. H.
, and
Rolston
,
D. E.
,
1995
, “
High-Resolution Time Domain Reflectometry: Sensitivity Dependency on Probe-Design
,”
Soil Sci.
, Vol. 
159
, pp. 
149
154
, https://doi.org/10.1097/00010694-199503000-00001
39.
Roth
,
K.
,
Schulin
,
R.
,
Flühler
,
H.
, and
Attinger
,
W.
,
1990
, “
Calibration of Time Domain Reflectometry for Water Content Measurement Using a Composite Dielectric Approach
,”
Water Resour. Res.
, Vol. 
26
, No. 
10
, pp. 
2267
2273
.
40.
Santamarina
,
J. C.
,
Klein
,
K. A.
, and
Fam
,
M. A.
,
2001
,
Soils and Waves: Particulate Materials Behavior, Characterization and Process Monitoring
,
John Wiley
,
New York, NY
, 508p.
41.
Santamarina
,
J. C.
,
Rinaldi
,
V. A.
,
Fratta
,
D.
,
Klein
,
K.
,
Wang
,
Y. H.
,
Cho
,
G. C.
, and
Cascante
,
G.
,
2005
, “
A Survey of Elastic and Electromagnetic Properties of Near-Surface Soils
,”
Near Surface Geophysics
,
Butler
D. K.
, Ed.,
Society of Exploration Geophysicists
,
Tulsa, OK
, pp. 
71
87
.
42.
Schneider
,
J. M.
and
Fratta
,
D.
,
2009
, “
Time-Domain Reflectometry—Parametric Study for the Evaluation of Physical Properties in Soils
,”
Can. Geotech. J.
, Vol. 
46
, No. 
7
, pp. 
753
767
, https://doi.org/10.1139/T09-018
43.
Selig
,
E. T.
and
Waters
,
J. M.
,
1994
,
Track Geotechnology and Substructure Management
,
Thomas Telford
,
New York, NY
, 446p.
44.
Sharma
,
P. V.
,
1997
,
Environmental and Engineering Geophysics
,
Cambridge University Press
,
Cambridge, United Kingdom
, 500p.
45.
Siddiqui
,
S. I.
,
Drnevich
,
V. P.
, and
Deschamps
,
R. J.
,
2000
, “
Time Domain Reflectometry Development for Use in Geotechnical Engineering
,”
Geotech. Test. J.
, Vol. 
23
, No. 
1
, pp. 
9
20
, https://doi.org/10.1520/GTJ11119J
46.
Topp
,
G.
,
Davis
,
J.
, and
Annan
,
A.
,
1980
, “
Electromagnetic Determination of Soil Water Content: Measurements in Coaxial Transmission Lines
,”
Water Resour. Res.
, Vol. 
16
, No. 
3
, pp. 
574
582
, https://doi.org/10.1029/WR016i003p00574
47.
Tzanis
,
A.
and
Kafetsis
,
G.
,
2004
, “
A Freeware Package for the Analysis and Interpretation of Common-Offset Ground Probing Radar Data, Based on General Purpose Computing Engines
,”
Bull. Geol. Soc. Greece
, Vol. 
36
, No. 
3
, pp. 
1347
1354
.
48.
Wensink
,
W. A.
,
1993
, “
Dielectric Properties of Wet Soils in the Frequency Range 1–3000 MHz
,”
Geophys. Prospect.
, Vol. 
41
, No. 
6
, pp. 
671
696
, https://doi.org/10.1111/j.1365-2478.1993.tb00878.x
This content is only available via PDF.
You do not currently have access to this content.