Abstract

The quality and acceptability of the results of the spectral analysis of surface waves (SASW) field test are dependent upon the coherence function, in conjunction with the transfer function. The coherence value is a measure of the quality of the test, and the transfer function denotes the phase lag between signals that are received by the geophones. This article presents a methodology for obtaining high-quality field test data, using a source capable of producing constant impact energy for several repeated impact strikes in an SASW test. Both laboratory and field investigations were performed to assess the effectiveness of the constant impact energy source at improving the coherence value. Tests were conducted on the surface of the soil compacted in a metal box and on the crest of an earthen dam using (a) handheld hammers, resulting in variable impact energy and (b) a drop hammer, dropped from a predetermined fixed height, resulting in constant impact energy. The variation in the shear wave velocity (Vs) profile obtained using the two testing methodologies and its impact on the seismic response analysis of an earthen embankment structure were studied. The SASW tests performed in the laboratory using constant impact energy were more efficient and repeatable than those performed using varying impact energy, and the results showed increased coherence values over a wide range of frequencies. A similar improvement in coherence data was observed in the field studies, and the Vs profiles were found to be significantly different for tests conducted using both methodologies. It was observed that the peak and spectral accelerations at the crest of embankments are significantly different when embankments with different Vs profiles are subjected to seismic excitation. This study emphasizes the importance of performing the SASW test, using a constant impact energy source to obtain a reliable estimate of Vs profiles of subsurface layers.

References

1.
Addo
,
K. O.
,
Kokan
,
M. J.
,
Woeller
,
D. J.
,
Beaton
,
N. F.
, and
O’Brien
,
J.
,
1993
, “
A Case History of Dynamic Compaction Evaluation by the SASW Method
,” presented at the
Seventh Annual Vancouver Geotechnical Society Symposium
, Vancouver, Canada,
Vancouver Geotechnical Society
,
Vancouver, Canada
, pp. 
1
15
.
2.
Addo
,
K. O.
and
Robertson
,
P. K.
,
1992
, “
Shear-Wave Velocity Measurement of Soils Using Rayleigh Waves
,”
Can. Geotech. J.
, Vol. 
29
, No. 
4
, pp. 
558
568
, https://doi.org/10.1139/t92-063
3.
Al-Hunaidi
,
M. O.
,
1992
, “
Difficulties with Phase Spectrum Unwrapping in Spectral Analysis of Surface Waves Nondestructive Testing of Pavements
,”
Can. Geotech. J.
, Vol. 
29
, No. 
3
, pp. 
506
511
, https://doi.org/10.1139/t92-055
4.
Al-Hunaidi
,
M. O.
,
1993
, “
Insights on the SASW Nondestructive Testing Method
,”
Can. J. Civ. Eng.
, Vol. 
20
, No. 
6
, pp. 
940
950
, https://doi.org/10.1139/l93-126
5.
Aouad
,
M. F.
,
Stokoe
,
K. H.
, II
, and
Roesset
,
J. M.
,
1993
,
Evaluation of Flexible Pavements and Subgrades Using the Spectral-Analysis-of-Surface-Waves (SASW) Method, Report No. FHWA/TX-95+ 1175-7F
,
Texas State Department of Highways and Public Transportation
,
Austin, TX
, 284p.
6.
ASTM C117-13
2013
,
Standard Test Method for Materials Finer than 75-μm (No. 200) Sieve in Mineral Aggregates by Washing
(Superseded 2017),
ASTM International
,
West Conshohocken, PA
, www.astm.org
7.
ASTM C136/C136M-14
2014
,
Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates
,
ASTM International
,
West Conshohocken, PA
, www.astm.org
8.
ASTM D698-12e2
2012
,
Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-lbf/ft3 (600 kN-m/m3))
,
ASTM International
,
West Conshohocken, PA
, www.astm.org
9.
ASTM D854-14
2014
,
Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer
,
ASTM International
,
West Conshohocken, PA
, www.astm.org
10.
ASTM D2487-11
2011
,
Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System)
(Superseded 2017),
ASTM International
,
West Conshohocken, PA
, www.astm.org
11.
ASTM D4318-10e1
2010
,
Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils
(Superseded 2017),
ASTM International
,
West Conshohocken, PA
, www.astm.org
12.
ASTM D7928-17
2017
,
Standard Test Method for Particle-Size Distribution (Gradation) of Fine-Grained Soils Using the Sedimentation (Hydrometer) Analysis
,
ASTM International
,
West Conshohocken, PA
, www.astm.org
13.
Brown
,
L. T.
,
Boore
,
D. M.
, and
Stokoe
,
K. H.
, II
,
2000
, “
Comparison of Shear-Wave Velocity Profiles from SASW and Downhole Seismic Tests at a Strong-Motion Site
,” presented at the
Twelfth World Conference on Earthquake Engineering
, Auckland, New Zealand,
New Zealand Society for Earthquake Engineering
,
Wellington, New Zealand
, pp. 
1
8
.
14.
Heisey
,
J. S.
,
Stokoe
,
K. H.
,
Hudson
,
W. R.
, and
Meyer
,
A. H.
,
1982
,
Determination of In situ Shear Wave Velocities from Spectral Analysis of Surface Waves, Report No. FHWA/TX-82/34+256-2
,
Texas State Department of Highways and Public Transportation
,
Austin, TX
, 293p.
15.
Hiltunen
,
D. R.
and
Woods
,
R. D.
,
1988
, “
SASW and Crosshole Test Results Compared
,”
Earthquake Engineering and Soil Dynamics II—Recent Advances in Ground-Motion Evaluation
,
ASCE
,
New York, NY
, pp. 
279
289
.
16.
Joh
,
S. H.
,
1996
, “
Advances in Data Interpretation Technique for Spectral-Analysis-of-Surface-Waves (SASW) Measurements
,” Ph.D. dissertation,
the University of Texas at Austin
, Austin, TX.
17.
Kramer
,
S. L.
,
1996
,
Geotechnical Earthquake Engineering
,
Prentice Hall
,
Upper Saddle River, NJ
, 653p.
18.
Kumar
,
J.
and
Hazra
,
S.
,
2014
, “
Effect of Input Source Energy on SASW Evaluation of Cement Concrete Pavement
,”
J. Mater. Civ. Eng.
, Vol. 
26
, No. 
6
, pp. 
04014013-1
04014013-7
, https://doi.org/10.1061/(ASCE)MT.1943-5533.0000827
19.
Kumar
,
J.
and
Rakaraddi
,
P. G.
,
2013
, “
Effect of Source Energy for SASW Testing on Geological Sites
,”
Geotech. Geol. Eng.
, Vol. 
31
, No. 
1
, pp. 
47
66
, https://doi.org/10.1007/s10706-012-9561-y
20.
Mancuso
,
C.
and
Vinale
,
F.
,
1993
, “
Use of SASW in Earth Dam Investigation
,” presented at the
International Symposium under the Auspices of the International Society for Soil Mechanics and Foundation Engineering (ISSMFE)
,
Athens, Greece, Balkema, Rotterdam, the Netherlands
, pp. 
1291
1298
.
21.
Marosi
,
K. T.
and
Hiltunen
,
D. R.
,
2004
, “
Characterization of Spectral Analysis of Surface Waves Shear Wave Velocity Measurement Uncertainty
,”
J. Geotech. Geoenviron. Eng.
, Vol. 
130
, No. 
10
, pp. 
1034
1041
, https://doi.org/10.1061/(ASCE)1090-0241(2004)130:10(1034)
22.
Miller
,
G. F.
,
Pursey
,
H.
, and
Bullard
,
E.
,
1955
, “
On the Partition of Energy between Elastic Waves in a Semi-Infinite Solid
,”
Proc. R. Soc. London, Ser. A
, Vol. 
233
, No. 
1192
, pp. 
55
69
, https://doi.org/10.1098/rspa.1955.0245
23.
Mukherjee
,
M.
and
Prashant
,
A.
,
2009
, “
Evaluation of SASW Test Configurations and Associated Data Uncertainties in Generating Site Specific Dispersion Curves
,”
Soils Found.
, Vol. 
49
, No. 
5
, pp. 
699
709
, https://doi.org/10.3208/sandf.49.699
24.
Murillo
,
C.
,
Caicedo
,
B.
,
Thorel
,
L.
, and
Garnier
,
J.
,
2006
, “
Characterization of Centrifuge Model Using SASW Techniques
,” presented at the
Sixth ICPMG International Conference on Physical Modelling in Geotechnics
, Hong Kong, China,
CRC Press
,
Boca Raton, FL
, pp. 
223
228
.
25.
Nazarian
,
S.
and
Stokoe
,
K. H.
, II
,
1983
,
Evaluation of Moduli and Thicknesses of Pavement Systems by Spectral-Analysis-of-Surface-Waves Method, Report No. FHWA/TX-83/26+256-4
,
Texas State Department of Highways and Public Transportation
,
Austin, TX
, 138p.
26.
Nazarian
,
S.
and
Stokoe
,
K. H.
, II
,
1985
,
In situ Determination of Elastic Moduli of Pavement Systems by Spectral-Analysis-of -Surface-Waves Method: Practical Aspects, Report No. FHWA/TX-86/l3+368-lF 2
,
Texas State Department of Highways and Public Transportation
,
Austin, TX
, 188p.
27.
Rathje
,
E. M.
,
Abrahamson
,
N. A.
, and
Bray
,
J. D.
,
1998
, “
Simplified Frequency Content Estimates of Earthquake Ground Motions
,”
J. Geotech. Geoenviron. Eng.
, Vol. 
124
, No. 
2
, pp. 
150
159
, https://doi.org/10.1061/(ASCE)1090-0241(1998)124:2(150)
28.
Rix
,
G. J.
,
Stokoe
,
K. H.
, II
, and
Roesset
,
J. M.
,
1991
,
Experimental Study of Factors Affecting the Spectral-Analysis-of-Surface-Waves Method, FHWA/TX-91+1123-5
,
Texas State Department of Highways and Public Transportation
,
Austin, TX
, 189p.
29.
Rosenblad
,
B. L.
and
Bertel
,
J. D.
,
2008
, “
Potential Phase Unwrapping Errors Associated with SASW Measurements at Soft-Over-Stiff Sites
,”
Geotech. Test. J.
, Vol. 
31
, No. 
5
, pp. 
433
441
, https://doi.org/10.1520/GTJ101411
30.
Sánchez-Salinero
,
I.
,
Roesset
,
J. M.
, and
Stokoe
,
K. H.
, II
,
1986
,
Analytical Studies of Body Wave Propagation and Attenuation
,
United States Air Force Office of Scientific Research
,
Arlington, VA
, 290p.
31.
Sayyedsadr
,
M.
and
Drnevich
,
V.
,
1989
, “
SASWOPR: A Program to Operate on Spectral Analysis of Surface Wave Data
,”
Nondestructive Testing of Pavements and Backcalculation of Moduli, ASTM STP1026
,
Baladi
G. Y.
and
Bush
A. J.
, Eds.,
ASTM International
,
West Conshohocken, PA
, pp. 
670
682
, https://doi.org/10.1520/STP19837S
32.
Sheu
,
J.-C.
,
Stokoe
,
K. H.
, II
,
Roesset
,
J. M.
, and
Hudson
,
W. R.
,
1986
,
Applications and Limitations of the Spectral-Analysis-of-Surface-Waves Method, FHWA/TX-87/70+437-3F
,
Texas State Department of Highways and Public Transportation
,
Austin, TX
, 305p.
33.
Stokoe
,
K. H.
,
Rix
,
G. J.
, and
Nazarian
,
S.
,
1991
, “
In situ Seismic Testing with Surface Waves
,”
Int. J. Rock Mech. Min. Sci. Geomech. Abstr.
, Vol. 
28
, Nos. 
2–3
, p. A91, https://doi.org/10.1016/0148-9062(91)92397-H
This content is only available via PDF.
You do not currently have access to this content.