Abstract

The effect of temperature on the volume change of sand is rarely reported but may be relevant to the performance of energy geostructures. This study involves an investigation of the thermal volume change behavior of saturated, dense sand through a series of temperature-controlled, isotropic hollow cylinder triaxial compression tests. Variables measured during a heating stage include the volume of water expelled from the sand specimen, the temperatures at the top, bottom, and inside of the specimen, and the axial and volumetric strains. The volumes were used along with thermo-elastic relationships for the pore water and soil skeleton to infer the axial and volumetric strains during drained heating. It was observed that the thermally induced axial and volumetric strains were negative, reflecting expansion. The pore water was observed to flow out of the sand specimen during heating, reflecting differential thermal expansion of the pore water and sand particles. The thermal volume changes were observed to be independent of the mean effective stress, as the dense sand specimens were all in normally consolidated conditions. Three linear equations incorporating the effects of temperature on the volume change behavior of dense sand were proposed and match well with the experimental data. The experimental approach proposed in this study can be used in the future to evaluate the role of sand density and stress state on the parameters of these equations.

References

1.
Agar
,
J.G.
,
Morgenstern
,
N.R.
, and
Scott
,
J.D.
,
1986
, “
Thermal Expansion and Pore Pressure Generation in Oil Sands
,”
Can. Geotech. J.
, Vol. 
23
, No. 
3
, pp. 
327
333
, https://doi.org/10.1139/t86-046
2.
Alsherif
,
N.A.
and
McCartney
,
J.S.
,
2015
, “
Thermal Behavior of Compacted Silt At Low Degrees of Saturation
,”
Géotechnique
, Vol. 
65
, No. 
9
, pp. 
703
716
, https://doi.org/10.1680/geot.14.P.049
3.
ASTM D4253
2014
,
Standard Test Methods for Maximum Index Density and Unit Weight of Soils Using a Vibratory Table
(Superseded),
ASTM International
,
West Conshohocken, PA
, www.astm.org
4.
ASTM D4254
2014
,
Standard Test Methods for Minimum Index Density and Unit Weight of Soils and Calculation of Relative Density
(Superseded),
ASTM International
,
West Conshohocken, PA
, www.astm.org
5.
Baldi
,
G.
,
Hueckel
,
T.
, and
Pellegrini
,
R.
,
1988
, “
Thermal Volume Changes of the Mineral-Water System in Low-Porosity Clay Soils
,”
Can. Geotech. J.
, Vol. 
25
, No. 
4
, pp. 
807
825
, https://doi.org/10.1139/t88-089
6.
Bianchini
,
A.
,
Heitzman
,
M.
, and
Maghsoodloo
,
S.
,
2011
, “
Evaluation of Temperature Influence on Friction Measurements
,”
J. Transp. Eng.
, Vol. 
137
, No. 
9
, pp. 
640
647
, https://doi.org/10.1061/(ASCE)TE.1943-5436.0000271
7.
Brandl
,
H.
,
2006
, “
Energy Foundations and Other Thermo-Active Ground Structures
,”
Géotechnique
, Vol. 
56
, No. 
2
, pp. 
81
122
, https://doi.org/10.1680/geot.2006.56.2.81
8.
Burghignoli
,
A.
,
Desideri
,
A.
, and
Miliziano
,
S.
,
2000
, “
A Laboratory Study on the Thermomechanical Behaviour of Clayey Soils
,”
Can. Geotech. J.
, Vol. 
37
, No. 
4
, pp. 
764
780
, https://doi.org/10.1139/t00-010
9.
Campanella
,
R.G.
and
Mitchell
,
J.K.
,
1968
, “
Influence of Temperature Variations on Soil Behaviour
,”
J. Soil Mech. Found. Div.
, Vol. 
94
, No. 
3
, pp. 
709
734
.
10.
Cekerevac
,
C.
and
Laloui
,
L.
,
2004
, “
Experimental Study of Thermal Effects on the Mechanical Behaviour of a Clay
,”
Int. J. Numer. Anal. Methods Geomech.
, Vol. 
28
, No. 
3
, pp. 
209
228
, https://doi.org/10.1002/nag.332
11.
Cekerevac
,
C.
,
Laloui
,
L.
, and
Vulliet
,
L.
,
2005
, “
A Novel Triaxial Apparatus for Thermo-Mechanical Testing of Soils
,”
Geotech. Test. J.
, Vol. 
28
, No. 
2
, pp. 
161
170
, https://doi.org/10.1520/GTJ12311
12.
Coccia
,
C.J. R.
and
McCartney
,
J.S.
,
2011
, “
A Thermo-Hydro-Mechanical True Triaxial Cell for Evaluation of the Impact of Anisotropy on Thermally Induced Volume Changes in Soils
,”
Geotech. Test. J.
, Vol. 
35
, No. 
2
, pp. 
227
237
, https://doi.org/10.1520/GTJ103803
13.
Coccia
,
C.J. R.
and
McCartney
,
J.S.
,
2016
a, “
High-Pressure Thermal Isotropic Cell for Evaluation of Thermal Volume Change of Soils
,”
Geotech. Test. J.
, Vol. 
39
, No. 
2
, pp. 
217
234
, https://doi.org/10.1520/GTJ20150114
14.
Coccia
,
C.J. R.
and
McCartney
,
J.S.
,
2016
b, “
Thermal Volume Change of Poorly Draining Soils I: Critical Assessment of Volume Change Mechanisms
,”
Comput. Geotech.
, Vol. 
80
, pp. 
26
40
, https://doi.org/10.1016/j.compgeo.2016.06.009
15.
Coccia
,
C.J. R.
and
McCartney
,
J.S.
,
2016
c, “
Thermal Volume Change of Poorly Draining Soils II: Model Development and Experimental Validation
,”
Comput. Geotech.
, Vol. 
80
, pp. 
16
25
, https://doi.org/10.1016/j.compgeo.2016.06.010
16.
Demars
,
K.R.
and
Charles
,
R.D.
,
1982
, “
Soil Volume Changes Induced by Temperature Cycling
,”
Can. Geotech. J.
, Vol. 
19
, No. 
2
, pp. 
188
194
, https://doi.org/10.1139/t82-021
17.
Gens
,
A.
,
Sánchez
,
M.
,
Guimarães
,
L.D. N.
,
Alonso
,
E.E.
,
Lloret
,
A.
,
Olivella
,
S.
,
Villar
,
M.V.
, and
Huertas
,
F.
,
2009
, “
A Full-Scale in Situ Heating Test for High-Level Nuclear Waste Disposal: Observations, Analysis and Interpretation
,”
Géotechnique
, Vol. 
59
, No. 
4
, pp. 
377
399
, https://doi.org/10.1680/geot.2009.59.4.377
18.
Graham
,
J.
,
Tanaka
,
N.
,
Crilly
,
T.
, and
Alfaro
,
M.
,
2001
, “
Modified Cam-Clay Modelling of Temperature Effects in Clays
,”
Can. Geotech. J.
, Vol. 
38
, No. 
3
, pp. 
608
621
, https://doi.org/10.1139/t00-125
19.
Hight
,
D.W.
,
Gens
,
A.
, and
Symes
,
M.J.
,
1983
, “
The Development of a New Hollow Cylinder Apparatus for Investigating the Effects of Principal Stress Rotation in Soils
,”
Géotechnique
, Vol. 
33
, No. 
4
, pp. 
355
383
, https://doi.org/10.1680/geot.1983.33.4.355
20.
Kertesz
,
R.
and
Sansalone
,
J.
,
2014
, “
Hydrologic Transport of Thermal Energy from Pavement
,”
J. Environ. Eng.
, Vol. 
140
, No. 
8
, 04014028, https://doi.org/10.1061/(ASCE)EE.1943-7870.0000831
21.
Knellwolf
,
C.
,
Peron
,
H.
, and
Laloui
,
L.
,
2011
, “
Geotechnical Analysis of Heat Exchanger Piles
,”
J. Geotech. Geoenviron. Eng.
, Vol. 
137
, No. 
10
, pp. 
890
902
, https://doi.org/10.1061/(ASCE)GT.1943-5606.0000513
22.
Kuntiwattanakul
,
P.
,
Towhata
,
I.
,
Ohishi
,
K.
, and
Seko
,
I.
,
1995
, “
Temperature Effects on Undrained Shear Characteristics of Clay
,”
Soils Found.
, Vol. 
35
, No. 
1
, pp. 
147
162
, https://doi.org/10.3208/sandf1972.35.147
23.
Ma
,
X.
and
Grabe
,
J.
,
2010
, “
Field Test of a Geothermal System in Hafen City, Hamburg
,” presented at the
GeoShanghai International Conference 2010
, Shanghai, China,
American Society of Civil Engineers
,
Reston, VA
.
24.
Murphy
,
K.D.
and
McCartney
,
J.S.
,
2015
, “
Seasonal Response of Energy Foundations During Building Operation
,”
Geotech. Geol. Eng.
, Vol. 
33
, No. 
2
, pp. 
343
356
, https://doi.org/10.1007/s10706-014-9802-3
25.
Ng
,
C.W. W.
,
Wang
,
S.H.
, and
Zhou
,
C.
,
2016
, “
Volume Change Behaviour of Saturated Sand under Thermal Cycles
,”
Géotech. Lett.
, Vol. 
6
, No. 
2
, pp. 
124
131
, https://doi.org/10.1680/jgele.15.00148
26.
Ng
,
C.W. W.
and
Zhou
,
C.
,
2014
, “
Cyclic Behaviour of an Unsaturated Silt at Various Suctions and Temperatures
,”
Géotechnique
, Vol. 
64
, No. 
9
, pp. 
709
720
, https://doi.org/10.1680/geot.14.P.015
27.
Olgun
,
C.G.
and
McCartney
,
J.S.
,
2014
, “
Outcomes from International Workshop on Thermoactive Geotechnical Systems for near-Surface Geothermal Energy: From Research to Practice
,”
J. Deep Found. Inst.
, Vol. 
8
, No. 
2
, pp. 
59
73
, https://doi.org/10.1179/1937525514Y.0000000005
28.
Romero
,
E.
,
Villar
,
M.V.
, and
Lloret
,
A.
,
2005
, “
Thermo-Hydro-Mechanical Behaviour of Two Heavily Overconsolidated Clays
,”
Eng. Geol.
, Vol. 
81
, No. 
3
, pp. 
255
268
, https://doi.org/10.1016/j.enggeo.2005.06.011
29.
Shamy
,
U.E.
,
Leon
,
O.D.
, and
Wells
,
R.
,
2013
, “
Discrete Element Method Study on Effect of Shear-Induced Anisotropy on Thermal Conductivity of Granular Soils
,”
Int. J. Geomech.
, Vol. 
13
, No. 
1
, pp. 
57
64
, https://doi.org/10.1061/(ASCE)GM.1943-5622.0000165
30.
Stewart
,
M.A.
,
Coccia
,
C.J. R.
, and
McCartney
,
J.S.
,
2014
, “
Issues in the Implementation of Sustainable Heat Exchange Technologies in Reinforced, Unsaturated Soil Structures
,” presented at
Geo-Congress 2014 (GSP 234)
, Atlanta, GA,
American Society of Civil Engineers
,
Reston, VA
.
31.
Sultan
,
N.
,
Delage
,
P.
, and
Cui
,
Y.J.
,
2002
, “
Temperature Effects on the Volume Change Behaviour of Boom Clay
,”
Eng. Geol.
, Vol. 
64
, pp. 
135
145
, https://doi.org/10.1016/S0013-7952(01)00143-0
32.
Sun
,
G.
,
Chen
,
Z.
, and
Liu
,
Z.
,
2011
, “
Analytical and Experimental Investigation of Thermal Expansion Mechanism of Steel Cables
,”
J. Mater. Civ. Eng.
, Vol. 
23
, No. 
7
, pp. 
1017
1027
, https://doi.org/10.1061/(ASCE)MT.1943-5533.0000271
33.
Takai
,
A.
,
Ghaaowd
,
I.
,
McCartney
,
J.S.
, and
Katsumi
,
T.
,
2016
, “
Impact of Drainage Conditions on the Thermal Volume Change of Soft Clay
,” presented at
Geo-Chicago 2016
, Chicago, IL,
American Society of Civil Engineers
,
Reston, VA
.
34.
Uchaipichat
,
A.
and
Khalili
,
N.
,
2009
, “
Experimental Investigation of Thermo-Hydro-Mechanical Behaviour of an Unsaturated Silt
,”
Géotechnique
, Vol. 
59
, No. 
4
, pp. 
339
353
, https://doi.org/10.1680/geot.2009.59.4.339
35.
Vega
,
A.
,
Coccia
,
C.J. R.
,
Tawati
,
A.E.
, and
McCartney
,
J.S.
,
2012
, “
Impact of the Rate of Heating on the Thermal Consolidation of Saturated Silt
,” presented at
GeoCongress 2012
, Oakland, CA,
American Society of Civil Engineers
,
Reston, VA
.
36.
Vega
,
A.
and
McCartney
,
J.S.
,
2015
, “
Cyclic Heating Effects on Thermal Volume Change of Silt
,”
Environ. Geotech.
, Vol. 
2
, No. 
5
, pp. 
257
268
, https://doi.org/10.1680/envgeo.13.00022
37.
Wang
,
L.Z.
,
Wang
,
K.J.
, and
Hong
,
Y.
,
2016
, “
Modeling Temperature-Dependent Behavior of Soft Clay
,”
J. Eng. Mech.
, Vol. 
142
, No. 
8
, pp. 
1
13
.
38.
Wanatowski
,
D.
and
Chu
,
J.
,
2008
, “
Effect of Specimen Preparation Method on the Stress-Strain Behavior of Sand in Plane-Strain Compression Tests
,”
Geotech. Test. J.
, Vol. 
31
, No. 
4
, pp. 
308
320
, https://doi.org/10.1520/GTJ101307
39.
Xiao
,
Y.
,
Sun
,
Y.F.
,
Liu
,
H.L.
,
Xiang
,
J.
,
Ma
,
Q.F.
, and
Long
,
L.H.
,
2017
a, “
Model Predictions for Behaviors of Sand-Nonplastic-Fines Mixtures Using Equivalent-Skeleton Void-Ratio State Index
,”
Sci. China Technol. Sci.
, Vol. 
60
, No. 
6
, pp. 
878
892
, https://doi.org/10.1007/s11431-016-9024-9
40.
Xiao
,
Y.
,
Xiang
,
J.
,
Liu
,
H.
, and
Ma
,
Q.
,
2017
b, “
Strength-Dilatancy Relation of Sand Containing Non-Plastic Fines
,”
Géotech. Lett.
, Vol. 
7
, No. 
2
, pp. 
204
210
, https://doi.org/10.1680/jgele.16.00144
41.
Zhou
,
C.
and
Ng
,
C.W. W.
,
2016
, “
Effects of Temperature and Suction on Plastic Deformation of Unsaturated Silt under Cyclic Loads
,”
J. Mater. Civ. Eng.
, Vol. 
28
, No. 
12
, pp. 
1
11
, https://doi.org/10.1061/(ASCE)MT.1943-5533.0001685
This content is only available via PDF.
You do not currently have access to this content.