Abstract

Though researchers have employed various techniques (gravimetric, electromagnetic, neutron scattering, heat pulse, microwave, and optical remote sensing techniques) for soil moisture measurement, dielectric-based techniques (Time Domain Reflectometry [TDR] and capacitance technique [CT]) have gained much more popularity, mainly due to revolutionary developments in the fields of electronics and data communication systems. However, the suitability and relative performance of these techniques for moisture measurement of soils is a point of debate. Hence, in order to address this issue, extensive studies were conducted on soils of entirely different characteristics, compacted at various compaction states (dry densities and water contents) by employing TDR and capacitance probes. Subsequently, the dielectric constant of the soil and its bulk electrical conductivity were obtained using these probes and compared against each other and those computed from Topp’s equation, which is a well-established relationship between the dielectric constant of the soil and its volumetric moisture content. An attempt was also made to correlate Ka values obtained from the dielectric techniques and Topp’s equation with those of the Time Propagation (TP) Mixing model, which incorporates the properties of the soil matrix as well. It has been observed that the Ka-TDR matches well with the Ka-Topp and Ka-TP, while the best match has been observed between Ka-TDR and Ka-Topp as compared to the Ka-CT. As such, the study demonstrates clearly that Topp’s equation, which ignores the soil-specific parameters, is capable of determining the soil moisture content appropriately. This study proposes an empirical equation that relates dielectric constants obtained from Topp’s equation to those obtained from TDR, CT, and the TP Mixing model. Such a relationship can be further utilized for estimating the volumetric soil moisture content.

References

1.
Acar
,
Y.B.
and
Olivieri
,
I.
,
1989
, “
Pore Fluid Effects on the Fabric and Hydraulic Conductivity of Laboratory Compacted Clay
,”
Transp. Res. Rec.
, Vol. 
1219
, pp. 
144
159
.
2.
Arnepalli
,
D.N.
,
Santhakumar
,
S.
,
Hanumantha Rao
,
B.
, and
Singh
,
D.N.
,
2008
, “
Comparison of Methods for Determining Specific Surface Area of Fine-Grained Soils
,”
Geotech. Geol. Eng.
, Vol. 
26
, No. 
2
, pp. 
121
132
, https://doi.org/10.1007/s10706-007-9152-5
3.
Arulanandan
,
K.
and
Smith
,
S.S.
,
1973
, “
Electrical Dispersion in Relation to Soil Structure
,”
J. Soil Mech. Found. Div.
, Vol. 
99
, No. 
12
, pp. 
1113
1133
.
4.
ASTM D1557-12
2012
,
Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56, 000 ft-lbf/ft3 (2, 700 kN-m/m3))
,
ASTM International
,
West Conshohocken, PA
, www.astm.org
5.
ASTM D2216
2008
,
Standard Test Methods for Laboratory Determination of Moisture Content of Soil
,
ASTM International
,
West Conshohocken, PA
, www.astm.org
6.
ASTM D2974-14
2014
,
Standard Test Methods for Moisture, Ash, and Organic Matter of Peat and Other Organic Soils
,
ASTM International
,
West Conshohocken, PA
, www.astm.org
7.
ASTM D422-63
2007
,
Standard Test Method for Particle Size Analysis of Soils
(Withdrawn 2016),
ASTM International
,
West Conshohocken, PA
, www.astm.org
8.
ASTM D4318-10
2013
,
Standard Test Method for Liquid Limit, Plastic Limit, and Plasticity Index of Soils
(Superseded),
ASTM International
,
West Conshohocken, PA
, www.astm.org
9.
ASTM D5550-14
2014
,
Standard Test Method for Specific Gravity of Soil Solids by Gas Pycnometer
,
ASTM International
,
West Conshohocken, PA
, www.astm.org
10.
Baudena
,
M.
,
Bevilacqua
,
I.
,
Canone
,
D.
,
Ferraris
,
S.
,
Previati
,
M.
, and
Provenzale
,
A.
,
2012
, “
Soil Water Dynamics at a Midlatitude Test Site: Field Measurements and Box Modeling Approaches
,”
J. Hydrol.
, Vols.
414–415
, pp. 
329
340
, https://doi.org/10.1016/j.jhydrol.2011.11.009
11.
Bhat
,
A.M.
,
Rao
,
B.H.
, and
Singh
,
D.N.
,
2007
, “
A Generalized Relationship for Estimating Dielectric Constant of Soils
,”
J. ASTM Int.
, Vol. 
4
, No. 
7
, pp. 
1
17
, https://doi.org/10.1520/JAI100595
12.
Camporese
,
M.
,
Ferraris
,
S.
,
Putti
,
M.
,
Salandin
,
P.
, and
Teatini
,
P.
,
2006
, “
Hydrological Modeling in Swelling/Shrinking Peat Soils
,”
Water Resour. Res.
, Vol. 
42
, No. 
6
, https://doi.org/10.1029/2005WR004495
13.
Canone
,
D.
,
Previati
,
M.
,
Ferraris
,
S.
, and
Haverkamp
,
R.
,
2009
, “
A New Coaxial Time Domain Reflectometry Probe for Water Content Measurement in Forest Floor Litter
,”
Vadose Zone J.
, Vol. 
8
, No. 
2
, pp. 
363
372
, https://doi.org/10.2136/vzj2008.0110
14.
Carter
,
D.L.
,
Mortland
,
M.M.
, and
Kemper
,
W.D.
,
1986
, “
Specific Surface
,”
Methods of Soil Analysis
,
American Society of Agronomy
,
Madison, WI
.
15.
Castiglione
,
P.
and
Shouse
,
P.J.
,
2003
, “
The Effect of Ohmic Cable Losses on Time-Domain Reflectometry Measurements of Electrical Conductivity
,”
Soil Sci. Soc. Am. J.
, Vol. 
67
, No. 
2
, pp. 
414
424
, https://doi.org/10.2136/sssaj2003.4140
16.
Cerato
,
A.B.
and
Lutenegger
,
A.J.
,
2002
, “
Determination of Surface Area of Fine-Grained Soils by the Ethylene Glycol Monoethyl Ether (EGME) Method
,”
Geotech. Test. J.
, Vol. 
25
, No. 
3
, pp. 
315
321
, https://doi.org/10.1520/GTJ11087J
17.
Cullity
,
B.D.
and
Stock
,
S.R.
,
2001
,
Elements of X-Ray Diffraction
, 3rd ed.,
Prentice-Hall Inc.
,
Upper Saddle River, NJ
.
18.
Decagon Devices
2012
,
5TE: Water Content, EC and Temperature Sensors, Operator’s Manual, Version 8
,
Decagon Devices, Inc
,
Pullman, WA
.
19.
DeVries
,
D.A.
,
1963
, “
Thermal Properties of Soil
,”
Physics of Plant Environment
,
John Wiley & Sons
,
Hoboken, NJ
.
20.
Elder
,
A.N.
and
Rasmussen
,
T.C.
,
1994
, “
Neutron Probe Calibration in Unsaturated Tuff
,”
Soil Sci. Soc. Am. J.
, Vol. 
58
, No. 
5
, pp. 
1301
1307
, https://doi.org/10.2136/sssaj1994.03615995005800050004x
21.
EPA 9081
1967
,
Cation-Exchange Capacity of Soils (Sodium Acetate)
,
Environmental Protection Agency
,
Washington, D.C.
, www.epa.gov
22.
Evett
,
R.S.
,
2000
, “
The TACQ Computer Program for Automatic Time Domain Reflectometry Measurement: II. Waveform Interpretation Methods
,”
Trans. ASAE
, Vol. 
43
, No. 
6
, pp. 
1947
1956
, https://doi.org/10.13031/2013.3100
23.
Fityus
,
S.
,
Wells
,
T.
, and
Huang
,
W.
,
2011
, “
Water Content Measurement in Expansive Soils Using the Neutron Probe
,”
Geotech. Test. J.
, Vol. 
34
, No. 
3
, pp. 
255
264
, https://doi.org/10.1520/GTJ102828
24.
Giese
,
K.
and
Tiemann
,
R.
,
1975
, “
Determination of the Complex Permittivity from Thin-Sample Time Domain Reflectometry Improved Analysis of the Step Response Waveform
,”
Adv. Mol. Relax. Processes
, Vol. 
7
, No. 
1
, pp. 
45
59
, https://doi.org/10.1016/0001-8716(75)80013-7
25.
Heimovaara
,
T.J.
and
Bouten
,
W.
,
1990
, “
A Computer-Controlled 36-Channel Time Domain Reflectometry System for Monitoring Soil Water Contents
,”
Water Resour. Res.
, Vol. 
26
, No. 
10
, pp. 
2311
2316
, https://doi.org/10.1029/WR026i010p02311
26.
Hilhorst
,
M.A.
,
2000
, “
A Pore Water Conductivity Sensor
,”
Soil Sci. Soc. Am. J.
, Vol. 
64
, pp. 
1922
1925
, https://doi.org/10.2136/sssaj2000.6461922x
27.
Hillel
,
D.
,
1982
,
Introduction to Soil Physics
,
Academic Press
,
Cambridge, MA
.
28.
Jones
,
S.B.
and
Or
,
D.
,
2004
, “
Frequency Domain Analysis for Extending Time Domain Reflectometry Water Content Measurement in Highly Saline Soils
,”
Soil Sci. Soc. Am. J.
, Vol. 
68
, No. 
5
, pp. 
1568
1577
, https://doi.org/10.2136/sssaj2004.1568
29.
Knoll
,
M.D.
,
1996
, “
A Petrophysical Basis for Ground-Penetrating Radar and Very Early Time Electromagnetics, Electrical Properties of Sand-Clay Mixtures
,” Ph.D. thesis,
University of British Columbia
, Vancouver, Canada.
30.
Martinez
,
A.
and
Byrnes
,
A.P.
,
2001
, “
Modelling Dielectric-Constant Values of Geologic Materials: An Aid to Ground-Penetrating Radar Data Collection and Interpretation
,” Bulletin 247, part 1,
Current Research in Earth Sciences
, Kansas Geological Survey, Wichita, KS.
31.
Moret-Fernández
,
D.
,
Arrúe
,
J.L.
,
Pérez
,
V.
, and
López
,
M.V.
,
2008
, “
A TDR-Pressure Cell Design for Measuring the Soil-Water Retention Curve
,”
Soil Tillage Res.
, Vol. 
100
, Nos. 
1–2
, pp. 
114
119
, https://doi.org/10.1016/j.still.2008.05.009
32.
Nissen
,
H.H.
and
Moldrup
,
P.
,
1994
, “Theoretical Background for the TDR Methodology,” presented at
Time Domain Reflectometry Applications in Soil Science
, Tjele, Denmark, Danish Institute of Plant and Soil Science,
Lyngby
,
Denmark
.
33.
Previati
,
M.
,
Canone
,
D.
,
Bevilacqua
,
I.
,
Boetto
,
G.
,
Pognant
,
D.
, and
Ferraris
,
S.
,
2012
, “
Evaluation of Wood Degradation for Timber Check Dams Using Time Domain Reflectometry Water Content Measurements
,”
Ecol. Eng.
, Vol. 
44
, pp.
259
268
, https://doi.org/10.1016/j.ecoleng.2012.03.004
34.
Previati
,
M.
,
Godio
,
A.
, and
Ferraris
,
S.
,
2011
, “
Validation of Spatial Variability of Snowpack Thickness and Density Obtained with GPR and TDR Methods
,”
J. Appl. Geophys.
, Vol. 
75
, No. 
2
, pp. 
284
293
, https://doi.org/10.1016/j.jappgeo.2011.07.007
35.
Rhoades
,
J.D.
,
Raats
,
P.A. C.
, and
Prather
,
R.J.
,
1976
, “
Effects of Liquid-Phase Electrical Conductivity, Water Content and Surface Conductivity on Bulk Soil Electrical Conductivity
,”
Soil Sci. Soc. Am. J.
, Vol. 
40
, No. 
5
, pp. 
651
655
, https://doi.org/10.2136/sssaj1976.03615995004000050017x
36.
Robinson
,
D.A.
,
Campbell
,
C.S.
,
Hopmans
,
J.W.
,
Hornbuckle
,
B.K.
,
Jones
,
S.B.
,
Knight
,
R.
,
Odgen
,
F.
,
Selker
,
J.
, and
Wendroth
,
O.
,
2008
, “
Soil Moisture Measurement for Ecological and Hydrological Watershed-Scale Observatories: A Review
,”
Vadose Zone J.
, Vol. 
7
, No. 
1
, pp. 
358
389
, https://doi.org/10.2136/vzj2007.0143
37.
Robinson
,
D.A.
,
Jones
,
S.B.
,
Wraith
,
J.M.
,
Or
,
D.
, and
Friedman
,
S.P.
,
2003
, “
A Review of Advances in Dielectric and Electrical Conductivity Measurement in Soils Using Time Domain Reflectometry
,”
Vadose Zone J.
, Vol. 
2
, No. 
4
, pp. 
444
475
, https://doi.org/10.2113/2.4.444
38.
Sadeghi
,
M.
,
Jones
,
S.B.
, and
Philpot
,
W.D.
,
2015
, “
A Linear Physically-Based Model for Remote Sensing of Soil Moisture Using Short Wave Infrared Bands
,”
Remote Sens. Environ.
, Vol. 
164
, pp. 
66
76
, https://doi.org/10.1016/j.rse.2015.04.007
39.
Sayde
,
C.
,
Gregory
,
C.
,
Gil-Rodriguez
,
M.
,
Tufillaro
,
N.
,
Tyler
,
S.
,
van de Giesen
,
N.
,
English
,
M.
,
Cuenca
,
R.
, and
Selker
,
J.S.
,
2010
, “
Feasibility of Soil Moisture Monitoring with Heated Fiber Optics
,”
Water Resour. Res.
, Vol. 
46
, No. 
6
, pp. 
1
8
, https://doi.org/10.1029/2009WR007846
40.
Selig
,
E.T.
and
Manusukhani
,
S.
,
1975
, “
Relationship of Soil Moisture to the Dielectric Property
,”
J. Geotech. Eng. Div.
, Vol. 
101
, No. 
8
, pp. 
775
770
.
41.
Shah
,
P.H.
and
Singh
,
D.N.
,
2004
, “
A Simple Methodology for Determining Electrical Conductivity of Soils
,”
J. ASTM Int.
, Vol. 
1
, No. 
5
, pp. 
1
11
, https://doi.org/10.1520/JAI12128
42.
Shah
,
P.H.
and
Singh
,
D.N.
,
2005
, “
Generalized Archie’s Law for Estimation of Soil Electrical Conductivity
,”
J. ASTM Int.
, Vol. 
2
, No. 
5
, pp. 
1
20
, https://doi.org/10.1520/JAI13087
43.
Shainberg
,
I.
,
Rhoades
,
J.D.
, and
Prather
,
R.J.
,
1980
, “
Effect of Exchangeable Sodium Percentage, Cation Exchange Capacity, and Soil Solution Concentration on Electrical Conductivity
,”
Soil Sci. Soc. Am. J.
, Vol. 
44
, No. 
3
, pp. 
469
473
, https://doi.org/10.2136/sssaj1980.03615995004400030006x
44.
Smith
,
S.S.
and
Arulanandan
,
K.
,
1981
, “
Relationship of Electrical Dispersion to Soil Properties
,”
J. Geotech. Eng. Div.
, Vol. 
107
, No. 
5
, pp. 
591
604
.
45.
Sparks
,
D.L.
,
1986
,
Soil Physical Chemistry
,
CRC Press
,
Boca Raton, FL
.
46.
Sreedeep
,
S.
,
Reshma
,
A.C.
, and
Singh
,
D.N.
,
2004
, “
Measuring Soil Electrical Resistivity Using a Resistivity Box and a Resistivity Probe
,”
Geotech. Test. J.
, Vol. 
27
, No. 
4
, pp. 
411
415
, https://doi.org/10.1520/GTJ11199
47.
Susha Lekshmi
,
S.U.
,
Singh
,
D.N.
, and
Shojaei Baghini
,
M.
,
2014
, “
A Critical Review of Soil Moisture Measurement
,”
Measurement
, Vol. 
54
, pp. 
92
105
, https://doi.org/10.1016/j.measurement.2014.04.007
48.
Susha Lekshmi
,
S.U.
,
Jayanthi
,
P.N. V.
,
Aravind
,
P.
,
Singh
,
D.N.
, and
Shojaei Baghini
,
M.
,
2016
, “
A Critical Analysis of the Performance of Plate- and Point-Electrodes for Determinationof Electrical Properties of the Soil Mass
,”
Measurement
, Vol. 
93
, pp. 
552
562
, https://doi.org/10.1016/j.measurement.2016.07.052
49.
Tarantino
,
A.
,
Ridley
,
A.M.
, and
Toll
,
D.G.
,
2008
, “
Field Measurement of Suction, Water Content, and Water Permeability
,”
Geotech. Geol. Eng.
, Vol. 
26
, No. 
6
, pp. 
751
782
, https://doi.org/10.1007/s10706-008-9205-4
50.
Tarara
,
J.M.
and
Ham
,
J.M.
,
1997
, “
Measuring Soil Moisture Content in the Laboratory and Field with Dual Probe Heat Capacity Sensors
,”
Agron. J.
, Vol. 
89
, No. 
4
, pp. 
535
542
, https://doi.org/10.2134/agronj1997.00021962008900040001x
51.
Topp
,
G.C.
,
Davis
,
J.L.
, and
Annan
,
A.P.
,
1980
, “
Electromagnetic Determination of Soil Moisture Content: Measurements in Coaxial Transmission Lines
,”
Water Resour. Res.
, Vol. 
16
, No. 
3
, pp. 
574
582
, https://doi.org/10.1029/WR016i003p00574
52.
Topp
,
G.C.
,
Davis
,
J.L.
, and
Annan
,
A.P.
,
1982
, “
Electromagnetic Determination of Soil Moisture Content Using TDR: Applications to Wetting Fronts and Steep Gradients
,”
Soil Sci. Soc. Am. J.
, Vol. 
46
, No. 
4
, pp. 
672
678
, https://doi.org/10.2136/sssaj1982.03615995004600040002x
53.
Topp
,
G.C.
,
Yanuka
,
M.
,
Zebchuk
,
W.D.
, and
Zegelin
,
S.
,
1988
, “
Determination of Electrical Conductivity Using TDR: Soil and Water Experiments in Coaxial Lines
,”
Water Resour. Res.
, Vol. 
24
, No. 
7
, pp. 
945
952
, https://doi.org/10.1029/WR024i007p00945
54.
Topp
,
G.C.
,
Zegelin
,
S.
, and
White
,
I.
,
2000
, “
Impacts of the Real and Imaginary Components of Relative Permittivity on Time Domain Reflectometry Measurements in Soils
,”
Soil Sci. Soc. Am. J.
, Vol. 
64
, No. 
4
, pp. 
1244
1252
, https://doi.org/10.2136/sssaj2000.6441244x
55.
Wojciech
,
S.
,
Wilczek
,
A.
, and
Alokhina
,
O.
,
2008
, “
Calibration of a TDR Probe for Low Soil Water Content Measurements
,”
Sens. Actuators, A
, Vol. 
147
, No. 
2
, pp. 
544
552
, https://doi.org/10.1016/j.sna.2008.06.015
56.
Yin
,
Z.
,
Lei
,
T.
,
Yan
,
Q.
,
Chen
,
Z.
, and
Dong
,
Y.
,
2013
, “
A Near-Infrared Reflectance Sensor for Soil Surface Moisture Measurement
,”
Comput. Electron. Agric.
, Vol. 
99
, pp. 
101
107
, https://doi.org/10.1016/j.compag.2013.08.029
57.
Yukselen
,
Y.
and
Kaya
,
A.
,
2003
, “
Zeta Potential of Kaolinite in the Presence of Alkali, Alkaline Earth and Hydrolyzable Metal Ions
,”
J. Water Air Soil Pollut.
, Vol. 
145
, Nos. 
1–4
, pp. 
155
168
, https://doi.org/10.1023/A:1023684213383
This content is only available via PDF.
You do not currently have access to this content.