Abstract

Direct simple shear (DSS) testing, despite its limitations, is one of the most common laboratory element tests in geotechnical engineering practice. The development and validation of a 300-mm diameter DSS device as well as test data generated for two materials with oversized particles, specifically pea gravel and municipal solid waste, are presented. The device has the capability to execute shear wave velocity measurements using both bender elements and accelerometers, as well as monotonic and cyclic testing under constant load or constant volume conditions. Validation testing using Ottawa sand C109 confirmed that the monotonic and cyclic constant volume response of the sand using the large-diameter device was similar to the results presented using conventional-sized DSS test devices. The shear wave velocity measurements using bender elements and accelerometers were found to be practically identical for the tested sand and pea gravel and were also consistent with data reported in the literature. The importance of axial (or vertical) displacement control during constant volume shearing is emphasized. It was found that tests that meet the ASTM D6528-07, Standard Test Method for Consolidated Undrained Direct Simple Shear Testing of Cohesive Soils, threshold of 0.05 % maximum axial strain during shearing may still result in different constant volume response, and it is recommended that (a) the threshold is changed to a maximum of 0.025 % and (b) the evolution of axial strain during constant volume shearing is always reported.

References

1.
Agarwal
,
T.K.
and
Ishibashi
,
I.
,
1991
, “Multi-Directional Wave Velocity by Piezoelectric Crystals,”
Recent Advances in Instrumentation, Data Acquisition and Testing in Soil Dynamics
,
Bhatia
S.K.
and
Blaney
G.W.
, Eds.,
ASCE
,
Reston, VA
, pp. 
102
117
.
2.
Airey
,
D.W.
,
Budhu
,
M.
, and
Wood
,
D.M.
,
1985
, “
Some Aspects of the Behaviour of Soils in Simple Shear
,”
Developments in Soil Mechanics and Foundation Engineering
,
Elsevier Applied Science Publishers
,
Amsterdam, Netherlands
, Vol. 
2
, pp.
185
213
.
3.
Amer
,
M.I.
,
Kovacs
,
W.D.
, and
Aggour
,
M.S.
,
1987
, “
Cyclic Simple Shear Size Effects
,”
J. Geotech. Eng.
, Vol. 
113
, No. 
7
, pp. 
693
707
, https://doi.org/10.1061/(ASCE)0733-9410(1987)113:7(693)
4.
Analog Devices Inc.
2016
, “
ADXL103/203 Data Sheet
,”
Analog Devices Inc.
,
Norwood, MA
, pp. 
1
16
.
5.
Ansell
,
P.
and
Brown
,
S.
,
1978
, “
A Cyclic Simple Shear Apparatus for Dry Granular Materials
,”
Geotech. Test. J.
, Vol. 
1
, No. 
2
, pp. 
82
92
, https://doi.org/10.1520/GTJ10375J
6.
Arroyo
,
M.
,
Muir Wood
,
D.
,
Greening
,
P.D.
,
Medina
,
L.
, and
Rio
,
J.
,
2006
, “
Effects of Sample Size on Bender-Based Axial G0 Measurements
,”
Géotechnique
, Vol. 
56
, No. 
1
, pp. 
39
52
, https://doi.org/10.1680/geot.2006.56.1.39
7.
ASTM C109/C109M-16a
2016
,
Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens)
,
ASTM International
,
West Conshohocken, PA
, www.astm.org
8.
ASTM C778-17
2017
,
Standard Specification for Standard Sand
,
ASTM International
,
West Conshohocken, PA
, www.astm.org
9.
ASTM D6528-07
2007
,
Standard Test Method for Consolidated Undrained Direct Simple Shear Testing of Cohesive Soils
,
ASTM International
,
West Conshohocken, PA
, www.astm.org
10.
Atkinson
,
J.H.
,
Lau
,
W.H. W.
, and
Powell
,
J.J. M.
,
1991
, “
Measurement of Soil Strength in Simple Shear Tests
,”
Can. Geotech. J.
, Vol. 
28
, No. 
2
, pp. 
255
262
, https://doi.org/10.1139/t91-031
11.
Azzouz
,
A.S.
,
Malek
,
A.M.
, and
Baligh
,
M.M.
,
1989
, “
Cyclic Behavior of Clays in Undrained Simple Shear
,”
J. Geotech. Eng.
, Vol. 
115
, No. 
5
, pp. 
637
657
, https://doi.org/10.1061/(ASCE)0733-9410(1989)115:5(637)
12.
Bates
,
C.R.
,
1989
, “
Dynamic Soil Property Measurements during Triaxial Testing
,”
Géotechnique
, Vol. 
39
, No. 
4
, pp. 
721
726
, https://doi.org/10.1680/geot.1989.39.4.721
13.
Bhatia
,
S.K.
,
1982
, “
The Verification of Relationships for Effective Stress Method to Evaluate Liquefaction Potential of Saturated Sands
,” Ph.D. thesis,
University of British Columbia
, Vancouver, Canada.
14.
Bjerrum
,
L.
and
Landva
,
A.
,
1966
, “
Direct Simple-Shear Tests on a Norwegian Quick Clay
,”
Géotechnique
, Vol. 
16
, No. 
1
, pp. 
1
20
, https://doi.org/10.1680/geot.1966.16.1.1
15.
Boulanger
,
R.W.
,
1990
, “
Liquefaction Behavior of Saturated Cohesionless Soils Subjected to Unidirectional and Bidirectional Static and Cyclic Simple Shear Stresses
,” Ph.D. dissertation,
University of California
, Berkeley, CA.
16.
Boulanger
,
R.
,
Chan
,
C.
,
Seed
,
H.
,
Seed
,
R.
, and
Sousa
,
J.
,
1993
, “
A Low-Compliance Bi-Directional Cyclic Simple Shear Apparatus
,”
Geotech. Test. J.
, Vol. 
16
, No. 
1
, pp. 
36
45
, https://doi.org/10.1520/GTJ10265J
17.
Boylan
,
N.
and
Long
,
M.
,
2009
, “
Development of a Direct Simple Shear Apparatus for Peat Soils
,”
Geotech. Test. J.
, Vol. 
32
, No. 
2
, pp. 
126
138
, https://doi.org/10.1520/GTJ101703
18.
Bray
,
J.D.
,
Zekkos
,
D.
,
Kavazanjian
,
E.
, Jr.
,
Athanasopoulos
,
G.A.
, and
Riemer
,
M.F.
,
2009
, “
Shear Strength of Municipal Solid Waste
,”
J. Geotech. Geoenviron. Eng.
, Vol. 
135
, No. 
6
, pp.
709
722
, https://doi.org/10.1061/(ASCE)GT.1943-5606.0000063
19.
Brignoli
,
E.G. M.
,
Gotti
,
M.
, and
Stokoe
,
K.H.
, II
,
1996
, “
Measurement of Shear Waves in Laboratory Specimens by Means of Piezoelectric Transducers
,”
Geotech. Test. J.
, Vol. 
19
, No. 
4
, pp. 
384
397
, https://doi.org/10.1520/GTJ10716J
20.
Budhu
,
M.
,
1984
, “
Nonuniformities Imposed by Simple Shear Apparatus
,”
Can. Geotech. J.
, Vol. 
21
, No. 
1
, pp. 
125
137
, https://doi.org/10.1139/t84-010
21.
Budhu
,
M.
,
1988
, “
Failure State of a Sand in Simple Shear
,”
Can. Geotech. J.
, Vol. 
25
, No. 
2
, pp. 
395
400
, https://doi.org/10.1139/t88-041
22.
Chang
,
W.J.
,
Chang
,
C.W.
, and
Zeng
,
J.K.
,
2014
, “
Liquefaction Characteristics of Gap-Graded Gravelly Soils in K0 Condition
,”
Soil Dyn. Earthquake Eng.
, Vol. 
56
, pp. 
74
85
, https://doi.org/10.1016/j.soildyn.2013.10.005
23.
Chang
,
W.J.
and
Hong
,
M.L.
,
2008
, “
Effects of Clay Content on Liquefaction Characteristics of Gap-Graded Clayey Sands
,”
Soils Found.
, Vol. 
48
, No. 
1
, pp. 
101
114
, https://doi.org/10.3208/sandf.48.101
24.
Cole
,
E.R. L.
,
1967
, “
Soils in the Simple Shear Apparatus
,” Ph.D. thesis,
Cambridge University
, Cambridge, UK.
25.
Dabeet
,
A.
,
Wijewickreme
,
D.
, and
Byrne
,
P.
,
2015
, “
Evaluation of Stress Strain Non-Uniformities in the Laboratory Direct Simple Shear Test Specimens Using 3D Discrete Element Analysis
,”
Geomech. Geoeng.
, Vol. 
10
, No. 
4
, pp. 
249
260
, https://doi.org/10.1080/17486025.2014.979889
26.
De Josselin de Jong
,
G.
,
1988
, “
Elasto—Plastic Version of the Double Sliding Model in Undrained Simple Shear Tests
,”
Géotechnique
, Vol. 
38
, No. 
4
, pp. 
533
555
, https://doi.org/10.1680/geot.1988.38.4.533
27.
DeGroot
,
D.J.
,
Ladd
,
C.C.
, and
Germaine
,
J.T.
,
1992
,
Direct Simple Shear Testing of Cohesive Soils, Research Report R92-18
,
Center for Scientific Excellence in Offshore Engineering, Department of Civil Engineering
,
MIT, Cambridge, MA
.
28.
DeGroot
,
D.J.
,
Germaine
,
J.T.
, and
Ladd
,
C.C.
,
1994
, “
Effect of Nonuniform Stresses on Measured DSS Stress-Strain Behavior
,”
J. Geotech. Eng.
, Vol. 
120
, No. 
5
, pp. 
892
912
, https://doi.org/10.1061/(ASCE)0733-9410(1994)120:5(892)
29.
Den Haan
,
E.J.
and
Grognet
,
M.
,
2014
, “
A Large Direct Simple Shear Device for the Testing of Peat at Low Stresses
,”
Géotech. Lett.
, Vol. 
4
, No. 
4
, pp. 
283
288
, https://doi.org/10.1680/geolett.14.00033
30.
Doherty
,
J.
and
Fahey
,
M.
,
2011
, “
Three-Dimensional Finite Element Analysis of the Direct Simple Shear Test
,”
Comput. Geotech.
, Vol. 
38
, No. 
7
, pp. 
917
924
, https://doi.org/10.1016/j.compgeo.2011.05.005
31.
Dounias
,
G.T.
and
Potts
,
D.M.
,
1993
, “
Numerical Analysis of Drained Direct and Simple Shear Tests
,”
J. Geotech. Eng.
, Vol. 
119
, No. 
12
, pp. 
1870
1891
, https://doi.org/10.1061/(ASCE)0733-9410(1993)119:12(1870)
32.
Duncan
,
J.M.
and
Dunlop
,
P.
,
1969
, “
Behavior of Soils in Simple Shear Tests
,” presented at the
7th International Conference on Soil Mechanics and Foundation
,
Mexico City, Mexico, ISSMGE
,
London, UK
, pp. 
101
109
.
33.
Dyvik
,
R.
,
Berre
,
T.
,
Lacasse
,
S.
, and
Raadim
,
B.
,
1987
, “
Comparison of Truly Undrained and Constant Volume Direct Simple Shear Tests
,”
Géotechnique
, Vol. 
37
, No. 
1
, pp. 
3
10
, https://doi.org/10.1680/geot.1987.37.1.3
34.
Dyvik
,
R.
and
Madshus
,
C.
,
1985
, “Lab Measurement of Gmax Using Bender Elements,” presented at the
ASCE Convention 1985
, Detriot, MI,
American Society of Civil Engineers
,
New York, NY
, pp. 
186
196
.
35.
Fam
,
M.
and
Santamarina
,
C.
,
1995
, “
Study of Geoprocesses with Complementary Mechanical and Electromagnetic Wave Measurements in an Oedometer
,”
Geotech. Test. J.
, Vol. 
18
, No. 
3
, pp. 
307
314
, https://doi.org/10.1520/GTJ10999J
36.
Finn
,
W.D.
,
1985
, “
Aspects of Constant Volume Cyclic Simple Shear
,” presented at the
Advances in the Art of Testing Soils Under Cyclic Conditions
, Detroit, MI,
ASCE
,
New York, NY
, pp. 
74
98
.
37.
Finn
,
W.D.
,
Bransby
,
P.L.
, and
Pickering
,
D.J.
,
1970
, “
Effect of Strain History on Liquefaction of Sand
,”
J. Soil Mech. Found. Div.
, Vol. 
96
, No. 
6
, pp. 
1917
1934
.
38.
Franke
,
E.
,
Kiekbusch
,
M.
, and
Schuppener
,
B.
,
1979
, “
A New Direct Simple Shear Device
,”
Geotech. Test. J.
, Vol. 
2
, No. 
4
, pp. 
190
199
, https://doi.org/10.1520/GTJ10457J
39.
Hardin
,
B.O.
and
Richart
,
F.E.
, Jr.
,
1963
, “
Elastic Wave Velocities in Granular Soils
,”
J. Soil Mech. Found. Div.
, Vol. 
89
, No. 
1
, pp. 
33
66
.
40.
Hubler
,
J.F.
,
Athanasopoulos-Zekkos
,
A.
, and
Zekkos
,
D.
,
2017
, “
Monotonic, Cyclic, and Postcyclic Simple Shear Response of Three Uniform Gravels in Constant Volume Conditions
,”
J. Geotech. Geoenviron. Eng.
, Vol. 
143
, No. 
9
, 04017043, https://doi.org/10.1061/(ASCE)GT.1943-5606.0001723
41.
Kammerer
,
A.M.
,
Pestana
,
J.M.
, and
Seed
,
R.B.
,
2002
, “
Undrained Response of Monterey 0/30 Sand under Multidirectional Cyclic Simple Shear Loading Conditions
,” Geotechnical Engineering Research Report No. UCB/GT/02-01, University of California, Berkeley, CA, p. 443.
42.
Kavazanjian
,
E.
,
Matasovic
,
N.
, and
Bachus
,
R.C.
,
1999
, “
Large-Diameter Static and Cyclic Laboratory Testing of Municipal Solid Waste
,” presented at
SARDINIA 99, Seventh International Waste Management and Landfill Symposium, Sardinia
, Italy,
CISA Publisher
,
Cagliari, Italy
, Vol. 
3
, pp. 
437
444
.
43.
Kawaguchi
,
T.
,
Mitachi
,
T.
, and
Shibuya
,
S.
,
2001
, “
Evaluation of Shear Wave Travel Time in Laboratory Bender Element Test
,” presented at the
15th International Conference on Soil Mechanics and Geomechanics Engineering
, Istanbul, Turkey,
ICSMGE
,
London, UK
, pp. 
155
158
.
44.
Kjellman
,
W.
,
1951
, “
Testing the Shear Strength of Clay in Sweden
,”
Géotechnique
, Vol. 
2
, No. 
3
, pp. 
225
232
, https://doi.org/10.1680/geot.1951.2.3.225
45.
Kovacs
,
W.D.
and
Leo
,
E.
,
1981
, “
Cyclic Simple Shear of Large Scale Sand Samples: Effects of Diameter to Height Ratio
,” presented at the
First International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics
, St Louis, MO,
University of Missouri-Rolla
,
Rolla, MO
, pp. 
897
904
.
46.
La Rochelle
,
P.
,
1981
, “
Limitations of Direct Simple Shear Test Devices
,”
Laboratory Shear Strength of Soil, ASTM STP740
,
Yong
R.N.
and
Townsend
F.C.
, Eds.,
ASTM International
,
West Conshohocken, PA
, pp. 
653
658
, https://doi.org/10.1520/STP28779S.
47.
Lee
,
J.S.
and
Santamarina
,
J.C.
,
2005
, “
Bender Elements: Performance and Signal Interpretation
,”
J. Geotech. Geoenviron. Eng.
, Vol. 
131
, No. 
9
, pp. 
1063
1070
, https://doi.org/10.1061/(ASCE)1090-0241(2005)131:9(1063)
48.
Matasović
,
N.
and
Kavazanjian
,
E.
,
1998
, “
Cyclic Characterization of OII Landfill Solid Waste
,”
J. Geotech. Geoenviron. Eng.
, Vol. 
124
, No. 
3
, pp. 
197
210
, https://doi.org/10.1061/(ASCE)1090-0241(1998)124:3(197)
49.
Peacock
,
W.H.
and
Seed
,
H.B.
,
1968
, “
Sand Liquefaction under Cyclic Loading Simple Shear Conditions
,”
J. Soil Mech. Found. Div.
, Vol. 
94
, No. 
3
, pp. 
689
708
.
50.
Pelkey
,
S.A.
,
Valsangkar
,
A.J.
, and
Landva
,
A.
,
2001
, “
Shear Displacement Dependent Strength of Municipal Solid Waste and Its Major Constituent
,”
Geotech. Test. J.
, Vol. 
24
, No. 
4
, pp. 
381
390
, https://doi.org/10.1520/GTJ11135J
51.
Pennington
,
D.S.
,
Nash
,
D.F. T.
, and
Lings
,
M.L.
,
2001
, “
Horizontally Mounted Bender Elements for Measuring Anisotropic Shear Moduli in Triaxial Clay Specimens
,”
Geotech. Test. J.
, Vol. 
24
, No. 
2
, pp. 
133
144
, https://doi.org/10.1520/GTJ11333J
52.
Porcino
,
D.
,
Caridi
,
G.
, and
Ghionna
,
V.N.
,
2008
, “
Undrained Monotonic and Cyclic Simple Shear Behaviour of Carbonate Sand
,”
Géotechnique
, Vol. 
58
, No. 
8
, pp. 
635
644
, https://doi.org/10.1680/geot.2007.00036
53.
Prevost
,
J.-H.
and
Høeg
,
K.
,
1976
, “
Reanalysis of Simple Shear Soil Testing
,”
Can. Geotech. J.
, Vol. 
13
, No. 
4
, pp. 
418
429
, https://doi.org/10.1139/t76-042
54.
Robertson
,
P.K.
,
Sasitharan
,
S.
,
Cunning
,
J.
, and
Sego
,
D.C.
,
1995
, “
Shear-Wave Velocity to Evaluate In-Situ State of Ottawa Sand
,”
J. Geotech. Eng.
, Vol. 
121
, No. 
3
, pp.
262
273
, https://doi.org/10.1061/(ASCE)0733-9410(1995)121:3(262)
55.
Roscoe
,
K.H.
,
1953
, “
An Apparatus for the Application of Simple Shear to Soil Samples
,” presented at the
Third International Conference on Soil Mechanics and Foundation Engineering
, Switzerland,
ISSGME
,
London, UK
, Vol. 
1
, pp. 
186
191
.
56.
Roscoe
,
K.H.
,
Bassett
,
R.H.
, and
Cole
,
E.R. L.
,
1967
, “
Principal Axes Observed during Simple Shear of a Sand
,”
Proceedings of the Geotechnical Conference on Shear Strength Properties of Natural Soils and Rocks
, Oslo, Norway,
Norwegian Geotechnical Institute
,
Oslo, Norway
, pp. 
231
237
.
57.
Sanin
,
M.V.
and
Wijewickreme
,
D.
,
2006
, “
Cyclic Shear Response of Channel-Fill Fraser River Delta Silt
,”
Soil Dyn. Earthquake Eng.
, Vol. 
26
, No. 
9
, pp. 
854
869
, https://doi.org/10.1016/j.soildyn.2005.12.006
58.
Santamarina
,
J.C.
,
Klein
,
K.A.
, and
Fam
,
M.A.
,
2001
,
Soils and Waves: Particulate Materials Behaviour, Characterization and Process Monitoring
,
John Wiley and Sons Ltd.
,
Hoboken, NJ
.
59.
Sawangsuriya
,
A.
,
2012
, “
Wave Propagation Methods for Determining Stiffness of Geomaterials
,”
Wave Processes in Classical and New Solids
, InTech, https://doi.org/10.5772/48562
60.
Shaw
,
P.
and
Brown
,
S.
,
1986
, “
Cyclic Simple Shear Testing of Granular Materials
,”
Geotech. Test. J.
, Vol. 
9
, No. 
4
, pp.
213
220
, https://doi.org/10.1520/GTJ10632J
61.
Silver
,
M.L.
and
Seed
,
H.B.
,
1971
, “
Deformation Characteristics of Sands under Cyclic Loading
,”
J. Soil Mech. Found. Eng. Div.
, Vol. 
97
, No. 
8
, pp. 
1081
1098
.
62.
Sivathayalan
,
S.
,
1994
, “
Static, Cyclic and Post Liquefaction Simple Shear Response of Sands
,” M. Sc. thesis,
University of British Columbia
, Vancouver, BC, Canada.
63.
Sivathayalan
,
S.
,
2000
, “Fabric, Initial State and Stress Path Effects on Liquefaction Susceptibility of Sands,” Ph.D. thesis,
University of British Columbia
, Vancouver, Canada.
64.
Thomann
,
T.G.
and
Hryciw
,
R.D.
,
1990
, “
Laboratory Measurement of Small Strain Shear Modulus under K0 Conditions
,”
Geotech. Test. J.
, Vol. 
13
, No. 
2
, pp. 
97
105
, https://doi.org/10.1520/GTJ10700J
65.
Vaid
,
Y.P.
and
Chern
,
J.C.
,
1983
, “
Effect of Static Shear on Resistance to Liquefaction
,”
Soils Found.
, Vol. 
23
, No. 
1
, pp. 
47
60
, https://doi.org/10.3208/sandf1972.23.47
66.
Vaid
,
Y.P.
and
Chern
,
J.C.
,
1985
, “
Cyclic and Monotonic Undrained Response of Saturated Sands
,”
Advances in the Art of Testing Soils under Cyclic Conditions
,
ASCE
,
Reston, VA
, pp. 
120
147
.
67.
Vaid
,
Y.P.
and
Sivathayalan
,
S.
,
1996
, “
Static and Cyclic Liquefaction Potential of Fraser Delta Sand in Simple Shear and Triaxial Tests
,”
Can. Geotech. J.
, Vol. 
33
, No. 
2
, pp.
281
289
, https://doi.org/10.1139/t96-007
68.
Vucetic
,
M.
,
1994
, “
Cyclic Threshold Shear Strains in Soils
,”
J. Geotech. Eng.
, Vol. 
120
, No. 
12
, pp. 
2208
2228
, https://doi.org/10.1061/(ASCE)0733-9410(1994)120:12(2208)
69.
Vucetic
,
M.
and
Dobry
,
R.
,
1988
, “
Degradation of Marine Clays under Cyclic Loading
,”
J. Geotech. Eng.
, Vol. 
114
, No. 
2
, pp. 
133
149
, https://doi.org/10.1061/(ASCE)0733-9410(1988)114:2(133)
70.
Vucetic
,
M.
and
Lacasse
,
S.
,
1982
, “
Specimen Size Effect in Simple Shear Test
,”
J. Geotech. Eng. Div.
, Vol. 
108
, No. 
12
, pp. 
1567
1585
.
71.
Wijewickreme
,
D.
,
Sriskandakumar
,
S.
, and
Byrne
,
P.
,
2005
, “
Cyclic Loading Response of Loose Air-Pluviated Fraser River Sand for Validation of Numerical Models Simulating Centrifuge Tests
,”
Can. Geotech. J.
, Vol. 
42
, No. 
2
, pp.
550
561
, https://doi.org/10.1139/t04-119
72.
Yazdi
,
A.M.
,
2004
, “
Post-liquefaction Behaviour of Sands under Simple Shear and Triaxial Loading Modes
,” M. S. thesis,
Carleton University
, Ottawa, Canada.
73.
Zekkos
,
D.
and
Fei
,
X.
,
2017
, “
Constant Load and Constant Volume Response of Municipal Solid Waste in Simple Shear
,”
Waste Manage.
, Vol. 
63
, pp. 
380
392
, https://doi.org/10.1016/j.wasman.2016.09.029
74.
Zekkos
,
D.
,
Sahadewa
,
A.
,
Woods
,
R.D.
, and
Stokoe
,
K.
, II
,
2014
, “
Development of a Model for Shear Wave Velocity of Municipal Solid Waste
,”
J. Geotech. Geoenviron. Eng.
, Vol. 
140
, No. 
3
, 04013030(14).
75.
Zekkos
,
D.
,
Fei
,
X.
,
Grizi
,
A.
, and
Athanasopoulos
,
G.A.
,
2017
, “
Response of Municipal Solid Waste to Mechanical Compression
,”
J. Geotech. Geoenviron. Eng.
, Vol. 
143
, No. 
3
, p. 04016101, https://doi.org/10.1061/(ASCE)GT.1943-5606.0001608
This content is only available via PDF.
You do not currently have access to this content.