Abstract

Fine particles may migrate in the preexisting pores of an internally unstable soil matrix caused by water flow. This migration changes the fine particle distribution and content at different zones and can affect the mechanical properties of these soils. Due to the different roles that fine particles can play in the force chains of an internally unstable soil, the available geometrical assessment methods do not predict post-erosion behavior of the soil. The fine particles may sit loose in the voids, provide lateral support for the primary soil matrix, or participate directly in stress transfer. This will depend on the fine content, particle size distribution, constriction size, relative density, stress path, and particle shape. However, to evaluate the post-erosion behavior accurately, computational modelling or experimental investigation needs to be conducted. A modified triaxial apparatus connected to a water supply system and collection tank was developed to investigate the post-erosion behavior of an internally unstable cohesionless soil under different loading patterns in undrained conditions. This system allowed all test phases to be completed, including erosion inside the triaxial chamber to remove any possible impact of specimen disturbance. The results suggest that the undrained shear strength of the eroded specimen increased at small vertical strains (0–4 %) under monotonic and cyclic loadings, whereas the initial modulus of elasticity remained unchanged. Also, the eroded specimen showed much higher resistance against cyclic loadings, whereas the non-eroded specimen was liquefied during less than five cycles of loading. This improvement was due to a better interlock between coarse particles due to erosion of fine particles. The hardening strain behavior of the non-eroded specimen changed to limited flow deformation due to a decrease in the fine content. The flow deformation of the eroded specimen at medium strain may be due to the local increase in lubrication effect of fine particles in the eroded specimen.

References

1.
Ahlinhan
,
M.F.
and
Achmus
,
M.
,
2010
, “
Experimental Investigation of Critical Hydraulic Gradients for Unstable Soils
,” presented at the
5th International Conference on Scour and Erosion
, San Francisco, CA, American Society of Civil Engineers, Reston, VA, pp. 
599
608
.
2.
Bendahmane
,
F.
,
Marot
,
D.
, and
Alexis
,
A.
,
2008
, “
Experimental Parametric Study of Suffusion and Backward Erosion
,”
J. Geotech. Geoenviron. Eng.
, Vol. 
134
, No. 
1
, pp. 
57
67
.
3.
Bradshaw
,
A.S.
and
Baxter
,
C.D. P.
,
2007
, “
Sample Preparation of Silts for Liquefaction Testing
,”
Geotech. Test. J.
, Vol. 
30
, No. 
4
, pp. 
324
332
.
4.
Burenkova
,
V.V.
,
1993
, “
Assessment of Suffusion in Non- Cohesive and Graded Soils
,” presented at the
1st International Conference on Geo-Filters
,
Balkema
,
Rotterdam, The Netherlands
, pp. 
357
360
.
5.
Carraro
,
J.A.
and
Prezzi
,
M.
,
2008
, “
A New Slurry-Based Method of Preparation of Specimens of Sand Containing Fines
,”
Geotech. Test. J.
, Vol. 
31
, No. 
1
, pp. 
1
11
.
6.
Chang
,
D.S.
and
Zhang
,
L.M.
,
2011
, “
A Stress-Controlled Erosion Apparatus for Studying Internal Erosion in Soils
,”
Geotech. Test. J.
, Vol. 
34
, No. 
6
, pp. 
579
589
.
7.
Chang
,
D.S.
and
Zhang
,
L.M.
,
2013
, “
Extended Internal Stability Criteria for Soils Under Seepage
,”
Soils Found.
, Vol. 
53
, No. 
4
, pp. 
569
583
.
8.
Dallo
,
Y.A.
,
Wang
,
Y.
, and
Ahmed
,
O.Y.
,
2013
, “
Assessment of the Internal Stability of Granular Soils Against Suffusion
,”
Eur. J. Environ. Civ. Eng.
, Vol. 
17
, No. 
4
, pp. 
219
230
.
9.
Ferreira
,
T.
and
Rasband
,
W.
,
2012
, “
ImageJ User Guide
,” IJ1. 46r, Natl. Inst. Health, Bethesda, MD,
2012
, https://web.archive.org/web/20170916195530/https://imagej.nih.gov/ij/docs/guide/user-guide.pdf/ (accessed 16 Sep. 2017).
10.
Fleshman
,
M.S.
and
Rice
,
J.D.
,
2014
, “
Laboratory Modelling of the Mechanisms of Piping Erosion Initiation
,”
J. Geotech. Geoenviron. Eng.
, Vol. 
140
, No. 
6
, https://doi.org/10.1061/(ASCE)GT.1943-5606.0001106
11.
Fraser
,
H.J.
,
1935
, “
Experimental Study of the Porosity and Permeability of Elastic Sediments
,”
J. Geol.
, Vol. 
43
, No. 
8
, pp. 
910
1010
.
12.
Frost
,
J.D.
and
Park
,
J.Y.
,
2003
, “
A Critical Assessment of the Moist Tamping Technique
,”
Geotech. Test. J.
, Vol. 
26
, No. 
1
, pp. 
57
70
.
13.
Guimaraes
,
M.
,
2002
, “
Crushed Stone Fines and Ion Removal from Clay Slurries-Fundamental Studies
,” Dissertation,
Georgia Institute of Technology
, Atlanta, GA.
14.
Hicher
,
P.Y.
,
2013
, “
Modelling the Impact of Particle Removal on Granular Material Behaviour
,”
Géotechnique
, Vol. 
63
, No. 
2
, pp. 
118
128
.
15.
Indraratna
,
B.
,
Israr
,
J.
, and
Rujikiatkamjorn
,
C.
,
2015
, “
Geometrical Method for Evaluating the Internal Instability of Granular Filters Based on Constriction Size Distribution
,”
J. Geotech. Geoenviron. Eng.
, Vol. 
141
, No. 
10
, pp. 
1
14
, https://doi.org/10.1061/(ASCE)GT.1943-5606.0001343
16.
Indraratna
,
B.
,
Raut
,
A.K.
, and
Khabbaz
,
H.
,
2007
, “
Constriction-Based Retention Criterion for Granular Filter Design
,”
J. Geotech. Geoenviron. Eng.
, Vol. 
133
, No. 
3
, pp. 
266
276
.
17.
International Commission on Large Dams (ICOLD)
2015
, “
Internal Erosion of Existing Dams, Levees and Dikes, and Their Foundations
,” Bulletin 164, Paris.
18.
Ishihara
,
K.
,
1993
, “
Liquefaction and Flow Failure During Earthquakes
,”
Géotechnique
, Vol. 
43
, No. 
3
, pp. 
351
451
.
19.
Istomina
,
V.S.
,
1957
, “
Filtration Stability of Soils
,” Gostroizdat, Moscow.
20.
Jiang
,
M.J.
,
Konrad
,
J.M.
, and
Leroueil
,
S.
,
2003
, “
An Efficient Technique for Generating Homogeneous Specimens for DEM Studies
,”
Comput. Geotech.
, Vol. 
30
, No. 
7
, pp. 
579
597
.
21.
Ke
,
L.
and
Takahashi
,
A.
,
2012
, “
Strength Reduction of Cohesionless Soil Due to Internal Erosion Induced by One-Dimensional Upward Seepage Flow
,”
Soils Found.
, Vol. 
52
, No. 
4
, pp. 
698
711
.
22.
Ke
,
L.
and
Takahashi
,
A.
,
2014
a, “
Triaxial Erosion Test for Evaluation of Mechanical Consequences of Internal Erosion
,”
Geotech. Test. J.
, Vol. 
37
, No. 
2
, pp. 
1
18
.
23.
Ke
,
L.
and
Takahashi
,
A.
,
2014
b, “
Experimental Investigations on Suffusion Characteristics and its Mechanical Consequences on Saturated Cohesionless Soil
,”
Soils Found.
, Vol. 
54
, No. 
4
, pp. 
713
730
.
24.
Ke
,
L.
and
Takahashi
,
A.
,
2015
, “
Drained Monotonic Responses of Suffusional Cohesionless Soils
,”
J. Geotech. Geoenviron. Eng.
, Vol. 
141
, No. 
8
, https://doi.org/10.1061/(ASCE)GT.1943-5606.0001327, 04015033
25.
Kenney
,
T.C.
,
Chahal
,
R.
,
Chiu
,
E.
,
Ofoegbu
,
G.I.
,
Omange
,
G.N.
, and
Ume
,
C.A.
,
1985
, “
Controlling Constriction Sizes of Granular Filters
,”
Can. Geotech. J.
, Vol. 
22
, No. 
1
, pp. 
32
43
.
26.
Kenney
,
T.C.
and
Lau
,
D.
,
1985
, “
Internal Stability of Granular Filters
,”
Can. Geotech. J.
, Vol. 
22
, No. 
2
, pp. 
215
225
, https://doi.org/10.1139/t85-029
27.
Kenney
,
T.C.
and
Lau
,
D.
,
1986
, “
Internal Stability of Granular Filters: Reply
,”
Can. Geotech. J.
, Vol. 
23
, No. 
4
, pp. 
420
423
, https://doi.org/10.1139/t86-068
28.
Kezdi
,
A.
,
1969
, “
Increase of Protective Capacity of Flood Control Dikes
,” Budapest University of Technology and Economics, Budapest. Report No. 1. (in Hungarian).
29.
Kuerbis
,
R.
and
Vaid
,
Y.P.
,
1988
, “
Sand Sample Preparation-The Slurry Deposition Method
,”
Soils Found.
, Vol. 
28
, No. 
4
, pp. 
107
118
.
30.
Kwang
,
T.
,
1990
, “
Improvement of Dam Filter Criterion for Cohesionless Base Soil
,” M. Eng. thesis,
Asian Institute of Technology
, Bangkok, Thailand.
31.
Ladd
,
R.S.
,
1978
, “
Preparing Test Specimens Using Undercompaction
,”
Geotech. Test. J.
, Vol. 
1
, No. 
1
, pp. 
16
23
.
32.
Li
,
M.
and
Fannin
,
R.J.
,
2011
, “
A Theoretical Envelope for Internal Instability of Cohesionless Soil
,”
Géotechnique
, Vol. 
62
, No. 
1
, pp. 
77
80
.
33.
Luo
,
Y.L.
,
Qiao
,
L.
,
Liu
,
X.X.
,
Zhan
,
M.L.
, and
Sheng
,
J.C.
,
2013
, “
Hydro-Mechanical Experiments on Suffusion Under Long-Term Large Hydraulic Heads
,”
Nat. Hazards
, Vol. 
65
, No. 
3
, pp. 
1361
1377
.
34.
Mao
,
C.X.
,
2005
, “
Study on Piping and Filters. Part 1: Piping (in Chinese)
,”
Rock Soil Mech.
, Vol. 
26
, No. 
2
, pp. 
209
215
.
35.
Marot
,
D.
,
Bendahmane
,
F.
, and
Nguyen
,
H.H.
,
2012
, “
Influence of Angularity of Coarse Fraction Grains on Internal Erosion Process
,”
La Houille Blanche
, Vol. 
6
, pp. 
47
53
.
36.
Mehdizadeh
,
A.
,
Disfani
,
M.M.
,
Evans
,
R.P.
,
Arulrajah
,
A.
, and
Ong
,
D.E. L.
,
2015
, “
Discussion of ‘Development of an Internal Camera-Based Volume Determination System for Triaxial Testing’ by S. E. Salazar, A. Barnes, and R. A. Coffman
,”
Geotech. Test. J.
, Vol. 
38
, No. 
1
, pp. 
165
168
, https://doi.org/10.1520/GTJ20150153
37.
Mitchell
,
J.K.
,
1993
,
Fundamentals of Soil Behavior
,
John Wiley & Sons, Inc.
,
New York, N. Y.
, pp. 
1
210
.
38.
Moffat
,
R.A.
and
Fannin
,
R.J.
,
2006
, “
A Large Permeameter for Study of Internal Stability in Cohesionless Soils
,”
Geotech. Test. J.
, Vol. 
29
, No. 
4
, pp. 
273
279
.
39.
Moffat
,
R.
and
Fannin
,
R.J
,
2011
, “
A Hydromechanical Relation Governing Internal Stability of Cohesionless Soil
,”
Can. Geotech. J.
, Vol. 
48
, No. 
3
, pp. 
413
424
.
40.
Moffat
,
R.
,
Fannin
,
R.J.
, and
Garner
,
S.
J,
2011
, “
Spatial and Temporal Progression of Internal Erosion in Cohesionless Soil
,”
Can. Geotech. J.
, Vol. 
48
, No. 
3
, pp. 
399
412
.
41.
Moffat
,
R.
and
Herrera
,
P.
,
2014
, “
Hydromechanical Model for Internal Erosion and Its Relationship with the Stress Transmitted by the Finer Soil Fraction
,”
Acta Geotech.
, Vol. 
10
, No. 
5
, pp. 
643
650
.
42.
Moraci
,
N.
,
Mandaglio
,
M.C.
, and
Ielo
,
D.
,
2014
, “
Analysis of the Internal Stability of Granular Soils Using Different Methods
,”
Can. Geotech. J.
, Vol. 
51
, No. 
9
, pp. 
1063
1072
.
43.
Ouyang
,
M.
and
Takahashi
,
A.
,
2015
, “
Influence of Initial Fines Content on Fabric of Soils Subjected to Internal Erosion
,”
Can. Geotech. J.
, Vol. 
53
, No. 
2
, pp. 
299
313
.
44.
Richards
,
K.S.
and
Reddy
,
K.R.
,
2008
, “
Experimental Investigation of Piping Potential in Earthen Structures
,”
Geotech. Special Pub.
, No. 
178
, pp. 
367
376
.
45.
Sail
,
Y.
,
Marot
,
D.
,
Sibille
,
L.
, and
Alexis
,
A.
,
2011
, “
Suffusion Tests on Cohesionless Granular Matter: Experimental Study
,”
Eur. J. Environ. Civ. Eng.
, Vol. 
15
, No. 
5
, pp. 
799
817
.
46.
Shire
,
T.
,
O’Sullivan
,
C.
,
Hanley
,
K.J.
, and
Fannin
,
R.J.
,
2014
, “
Fabric and Effective Stress Distribution in Internally Unstable Soils
,”
J. Geotech. Geoenviron. Eng.
, Vol. 
140
, No. 
12
.
47.
Scholtès
,
L.
,
Hicher
,
P.Y.
, and
Sibille
,
L.
,
2010
, “
Multiscale approaches to describe mechanical responses induced by particle removal in granular materials
,”
Comptes Rendus Mécanique
, Vol. 
338
, No. 
10
, pp. 
627
638
.
48.
Sherard
,
J.L.
,
1979
, “
Sinkholes in Dams of Coarse, Broadly Graded Soils
,” in transactions of the
13th International Congress on Large Dams
, New Delhi, India,
International Commission on Large Dams
,
Paris
, pp. 
25
34
.
49.
Skempton
,
A.W.
and
Brogan
,
J.M.
,
1994
, “
Experiments on Piping in Sandy Gravels
,”
Géotechnique
, Vol. 
44
, No. 
3
, pp. 
449
460
.
50.
Terzaghi
,
K.
,
1925
, “
Erdbaumechanik auf bodensphysikalischer grundlage
,”
Franz Deuticke
, Vienna.
51.
Uchaipichat
,
A.
,
Khalili
,
N.
, and
Zargarbashi
,
S.
,
2011
, “
A Temperature Controlled Triaxial Apparatus for Testing Unsaturated Soils
,”
Geotech. Test. J.
, Vol. 
34
, No. 
5
, pp. 
424
432
.
52.
U.S. Army Corps of Engineers
1953
, “
Filter Experiments and Design Criteria
,” Waterways Experiment Station, Vicksburg, MS, Technical Memorandum No. 3–360.
53.
Wood
,
D.M.
,
Maeda
,
K.
, and
Nukudani
,
E.
,
2010
, “
Modelling Mechanical Consequences of Erosion
,”
Géotechnique
, Vol. 
60
, No. 
6
, pp. 
447
457
.
54.
Xiao
,
M.
and
Shwiyhat
,
N.
,
2012
, “
Experimental Investigation of the Effects of Suffusion on Physical and Geomechanic Characteristics of Sandy Soils
,”
Geotech. Test. J.
, Vol. 
35
, No. 
6
, pp. 
890
900
.
This content is only available via PDF.
You do not currently have access to this content.