Abstract

This paper describes the use of X-ray tomography imaging of natural gravel specimens to create repeatable assemblages of bonded gravel-size resin specimens using a 3D printer. The paper describes how the resulting resin-based surrogate specimens have particle geometry and interparticle bonds that are a function of the original scanning image resolution and 3D printer resolution. Results of conventional triaxial compression testing of original source gravel specimens and constructed bonded specimens are compared. While there are quantitative differences in behavior between unbonded source and bonded duplicate specimens, the surrogate specimens are shown to have macroscale mechanical behavior that may be considered typical of some granular soils. The ability to generate identical surrogate bonded granular specimens with the same particle arrangement holds promise to remove the influence on geotechnical laboratory testing outcomes due to the unavoidable structural variation in specimens of natural granular assemblages.

References

1.
Chang
,
K.T.
,
Kang
,
Y.M.
,
Ge
,
L.
, and
Cheng
,
M.C.
,
2015
, “
Mechanical Properties of Gravel Deposits Evaluated by Nonconventional Methods
,”
J. Mater. Civ. Eng.
, Vol. 
27
, No. 
11
, pp. 
04015032-1
04015032-11
.
2.
Chang
,
S.S.
,
Matsushima
,
T.
, and
Lee
,
X.
,
2003
, “
Heterogeneous Strain and Bonded Granular Structure Change in Triaxial Specimen Studied by Computer Tomography
,”
J. Eng. Mech.
, , Vol. 
129
, No. 
11
, pp. 
1295
1307
, https://doi.org/10.1061/(ASCE)0733-9399(2003)129:11(1295)
3.
Ferreira
,
T.
and
Rasband
,
W.
,
2012
,
ImageJ User Guide
,
U.S. National Institutes of Health
,
Bethesda, Maryland
, https://web.archive.org/web/20170717204514/https://imagej.nih.gov/ij/docs/guide/user-guide.pdf (accessed 17 Jul. 2017).
4.
Ferro
,
D.N.
and
Morari
,
F.
,
2015
, “
From Real Soils to 3D-Printed Soils: Reproduction of Complex Pore Network at the Real Size in a Silty-Loam Soil
,”
Soil Sci. Soc. Am. J.
, Vol. 
79
, No. 
4
, pp. 
1008
1017
, https://doi.org/10.2136/sssaj2015.03.0097
5.
Gill-Robinson
,
H.
,
Elias
,
J.
,
Bender
,
F.
,
Allard
,
T.T.
, and
Hoppa
,
R.D.
,
2006
, “
Using Image Analysis Software to Create a Physical Skull Model for the Facial Reconstruction of a Wrapped Akhmimic Mummy
,”
CIT. J. Comput. Inform. Technol.
, Vol. 
14
, No. 
1
, pp. 
45
51
, https://doi.org/10.2498/cit.2006.01.05
6.
Hanaor
,
D.A. H.
,
Gan
,
Y.
,
Revay
,
M.
,
Airey
,
D.V.
, and
Einav
,
I.
,
2016
, “
3D Printable Geomaterials
,”
Géotechnique
, Vol. 
66
, No. 
4
, pp. 
323
332
, https://doi.org/10.1680/jgeot.15.P.034
7.
Ishutov
,
S.
,
Hasiuk
,
F.J.
,
Harding
,
C.
, and
Gray
,
J.H.
,
2015
, “
3D Printing Sandstone Porosity Models
,”
Interpretation
, Vol. 
3
, No. 
3
, pp. 
1
19
.
8.
JIS K 7161
Plastic-Deformation of Tensile Properties
,
Japanese Industrial Standards Committee
, https://www.jisc.go.jp/eng/
9.
Maire
,
E.
and
Withers
,
P.J.
,
2013
, “
Quantitative X-Ray tomography
,”
Int. Mater. Rev.
, Vol. 
59
, No. 
1
, pp. 
1
43
, https://doi.org/10.1179/1743280413Y.0000000023
10.
Matsumura
,
S.
and
Mizutani
,
T.
,
2015
, “
3D Printing of Soil Structure for Evaluation of Mechanical Behavior
,” presented at the
Fourteenth International Congress for Stereology and Image Analysis
, Liège, Belgium, University of Liege, FA02: 0–3.
11.
Miskin
,
M.Z.
and
Jaeger
,
H.M.
,
2013
, “
Adapting Granular Materials Through Artificial Evolution
,”
Nat. Mater.
, Vol. 
12
, pp. 
326
331
, https://doi.org/10.1038/nmat3543
12.
Mukunoki
,
T.
,
Miyata
,
Y.
,
Mikami
,
K.
, and
Shiota
,
E.
,
2016
, “
X-Ray CT Analysis of Pore Structure in Sand
,”
Solid Earth
, Vol. 
7
, No. 
3
, pp. 
929
942
, https://doi.org/10.5194/se-7-929-2016
13.
Otani,
J.
and
Obara,
Y.
, Eds.,
2004
,
Xray CT for Geomaterials: Soils, Concrete, Rocks International Workshop on Xray CT for Geomaterials
,
Kumamoto, Japan
,
CRC Press
, Boca Raton, FL, p. 392.
14.
Otten
,
W.
,
Pajor
,
R.
,
Schmidt
,
S.
,
Baveye
,
P.C.
,
Hague
,
R.
, and
Falconer
,
R.E.
,
2012
, “
Combining X-Ray CT and 3D Printing Technology to Produce Microcosms with Replicable, Complex Pore Geometries
,”
Soil Biol. Biochem.
, Vol. 
51
, pp. 
53
55
, https://doi.org/10.1016/j.soilbio.2012.04.008
15.
Shashidhar
,
N.
,
1999
, “
X-Ray Tomography of Asphalt Concrete
,”
Trans. Res. Rec.
, Vol. 
1681
, pp. 
186
192
, https://doi.org/10.3141/1681-22
16.
Shi
,
B.M.
,
Wu
,
Y.
,
Chen
,
Z.
, and
Inyang
,
J.H.
,
1999
, “
Monitoring of Internal Failure Evolution in Soils Using Computerization X-Ray Tomography
,”
Eng. Geol.
, Vol. 
54
, No. 
3
, pp. 
321
328
.
17.
Takano
,
D.
,
Lenoir
,
N.
,
Otani
,
J.
, and
Hall
,
S.
,
2015
, “
Localised Deformation in a Wide-Grained Sand Under Triaxial Compression Revealed by X-Ray Tomography and Digital Image Correlation
,”
Soils Found.
, Vol. 
55
, No. 
4
, pp. 
906
915
, https://doi.org/10.1016/j.sandf.2015.06.020
18.
White
,
D.G.
,
Take
,
W.A.
, and
Bolton
,
M.D.
,
2003
, “
Soil Deformation Measurement Using Particle Image Velocimetry (PIV) and Photogrammetry
,”
Géotechnique
, Vol. 
53
, No. 
7
, pp. 
619
631
, https://doi.org/10.1680/geot.2003.53.7.619
19.
Zelelew
,
H.M.
,
Almuntashri
,
A.
,
Agaian
,
S.
, and
Papagiannakis
,
A.T.
,
2013
, “
An Improved Image Processing Technique for Asphalt Concrete X-Ray CT Images
,”
Road Mater. Pavement Des.
, Vol. 
14
, No. 
2
, pp. 
341
359
, https://doi.org/10.1080/14680629.2013.794370
This content is only available via PDF.
You do not currently have access to this content.