Abstract

Liquefaction stability analysis using the undrained shear strength characteristics of sandy soils that are prone to liquefaction is a major challenge in geotechnical earthquake engineering. The objective of this laboratory research work was to study the combined effect of the sample reconstitution (dry funnel pluviation and wet deposition) and overconsolidation ratio (OCR = 1, 2, 4, and 8) on the undrained shear strength of medium dense (D_r = 52 %) sand-silt mixtures under undrained monotonic loading conditions. For this purpose, a series of triaxial tests were carried out on reconstituted saturated silty sand samples with fines content ranging from 0 to 40 %. The confining pressure was kept constant to 100 kPa in all tests. The obtained data showed that the dry funnel pluviated samples were more resistant than the wet deposited samples and complete static liquefaction of samples reconstituted with wet deposition method was observed for the lower overconsolidation ratios (OCR = 1, 2, and 4). The undrained shear strength decreases with the increase of fines content for dry funnel pluviation (DFP) and the inverse tendency was observed in the case of wet deposition (WD) for the range of the overconsolidation ratio under consideration (1 ≤ OCR ≤ 8).

References

1.
ASTM D4253-14,
2002
:
Standard Test Method for Maximum Index Density and Unit Weight of Soils Using a Vibratory Table
,
ASTM International
,
West Conshohocken, PA
, www.astm.org
2.
ASTM D4254-14,
2002
:
Standard Test Method for Minimum Index Density and Unit Weight of Soils and Calculation of Relative Density
,
ASTM International
,
West Conshohocken, PA
, www.astm.org
3.
Belkhatir
,
M.
,
Arab
,
A.
,
Della
,
N.
, and
Schanz
,
T.
,
2012
, “
Experimental Study of Undrained Shear Strength of Silty Sand: Effect of Fines and Gradation
,”
Geotech. Geol. Eng.
, Vol.
30
, No.
5
, pp.
1103
1118
. https://doi.org/10.1007/s10706-012-9526-1
4.
Belkhatir
,
M.
,
Schanz
,
T.
,
Arab
,
A.
,
Della
,
N.
, and
Kadri
,
A.
,
2014
, “
Insight Into the Effects of Gradation on the Pore Pressure Generation of Sand–Silt Mixtures
,”
Geotech. Test. J.
, Vol.
37
, No.
5
, pp.
1
10
. https://doi.org/10.1520/GTJ20130051
5.
Benahmed
,
N.
,
Canou
,
J.
, and
Dupla
,
J. C.
,
2004
, “
Initial Structure and Static Liquefaction Properties of Sand
,”
Comptes Rendus Mecanique
, Vol.
332
, No.
11
, pp.
887
894
. https://doi.org/10.1016/S1631-0721(04)00185-8
6.
Bouferra
,
R.
,
2000
, “
Etude en Laboratoire de la Liquéfaction Des Sols [Laboratory Study on Liquefaction of Soil]
,” Ph.D. thesis,
Université des sciences et techniques
, Lille, France.
7.
Della
,
N.
,
Arab
,
A.
,
Belkhatir
,
M.
, and
Missoum
,
H.
,
2009
, “
Identification of the Behaviour of the Chlef Sand to Static Liquefaction
,”
C. R. Mecanique
, Vol.
337
, No.
5
, pp.
282
290
. https://doi.org/10.1016/j.crme.2009.06.014
8.
Della
,
N.
,
Missoum
,
H.
,
Arab
,
A.
, and
Belkhatir
,
M.
,
2010
, “
Experimental Study of the Overconsolidation and Saturation Effects on the Mechanical Characteristics and Residual Strength of Chlef River Sandy Soil
,”
Periodica Polytech. Civ. Eng.
, Vol.
54
, No.
2
, pp.
107
116
. https://doi.org/10.3311/pp.ci.2010-2.06
9.
Dash
,
H. K.
and
Sitharam
,
T. G.
,
2011
, “
Undrained Monotonic Response of Sand-Silt Mixtures: Effect of Nonplastic Fines
,”
Geomech. Geoeng.
, Vol.
6
, No.
1
, pp.
47
58
. https://doi.org/10.1080/17486021003706796
10.
Huang
,
Y. T.
,
Huang
,
A. B.
,
Kuo
,
Y. C.
, and
Tsai
,
M. D.
,
2004
, “
A Laboratory Study on the Undrained Strength of a Silty Sand From Central Western Taiwan
,”
Soil Dyn. Earthq. Eng.
, Vol.
24
, Nos.
9–10
, pp.
733
743
. https://doi.org/10.1016/j.soildyn.2004.06.013
11.
Ishihara
,
K.
,
Sodekawa
,
M.
, and
Tanaka
,
Y.
,
1978
, “
Effects of Surconsolidation on Liquefaction Characteristics of Sands Containing Fines
,”
Dynamic Geotechnical Testing, ASTM STP 654
,
ASTM Committee D18.05
, Eds.,
ASTM International
,
West Conshohocken, PA
, pp.
246
264
.
12.
Ishihara
,
K.
and
Takatsu
,
H.
,
1979
, “
Effects of Oversurconsolidation and K0 Conditions the Liquefaction Characteristics of Sands
,”
Soils Found.
, Vol.
19
, No.
4
, pp.
59
68
. https://doi.org/10.3208/sandf1972.19.4_59
13.
Khin
,
S. T.
,
Seung
,
R. L.
, and
Young
,
S. K.
,
2009
, “
Comparison Between Shear Behaviour of Overconsolidated Nakdong River Sandy Silt and Silty Sand
,”
Mar. Georesour. Geotechnol.
, Vol.
27
, No.
3
, pp.
217
229
. https://doi.org/10.1080/10641190902967101
14.
Lade
,
P. V.
and
Duncan
,
J. M.
,
1973
, “
Cubical Triaxial Tests on Cohesionless Soil
,”
J. Soil Mech. Found. Eng. Div.
, Vol.
99
, No.
10
, pp.
793
812
.
15.
Lade
,
P. V.
and
Yamamuro
,
J. A.
,
1997
, “
Effects of Nonplastic Fines on Static Liquefaction of Sands
,”
Can. Geotech. J.
, Vol.
34
, No.
6
, pp.
918
928
. https://doi.org/10.1139/t97-052
16.
Mulilis
,
P. J.
,
Seed
,
H. B.
,
Chan
,
C.
,
Mitchell
,
J. K.
, and
Arulanandan
,
K.
,
1977
, “
Effect of Sample Preparation on Sand Liquefaction
,”
J. Geotech. Eng. Div.
, Vol.
103
, No.
2
, pp.
91
109
.
17.
Oda
,
M.
and
Iwashita
,
K.
,
1999
,
Mechanics of Granular Materials: An Introduction
,
A.A. Balkema
,
Rotterdam, The Netherlands
.
18.
Pitman
,
T. D.
,
Robertson
,
P. K.
, and
Sego
,
D. C.
,
1994
, “
Influence of Fines on the Collapse of Loose Sands
,”
Can. Geotech. J.
, Vol.
31
, No.
5
, pp.
728
739
. https://doi.org/10.1139/t94-084
19.
Polito
,
C. P.
and
Martin
,
J. R.
,
2001
, “
Effects of Non-Plastic Fines on the Liquefaction Resistance of Solids
,”
J. Geotech. Environ. Eng.
, Vol.
127
, No.
5
, pp.
408
415
. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:5(408)
20.
Tsuchida
,
H.
,
1970
, “
Prediction and Countermeasure Against the Liquefaction in Sand Deposits
,”
Abstract of the Seminar in the Port and Harbor Research Institute
,
Port and Harbor Research Institute
,
Yokosuka, Japan
, pp. 3.1–3.33.
21.
Vaid
,
Y. P.
,
Sivathayalan
,
S.
, and
Stedman
,
D.
,
1999
, “
Influence of Specimen Reconstituting Method on the Undrained Response of Sand
,”
Geotech. Test. J.
, Vol.
22
, No.
3
, pp.
187
195
. https://doi.org/10.1520/GTJ11110J
22.
Yamamuro
,
J. A.
,
Wood
,
F. M.
, and
Lade
,
P. V.
,
2008
, “
Effect of Depositional Method on the Microstructure of Silty Sand
,”
Can. Geotech. J.
, Vol.
45
, No.
11
, pp.
1538
1555
. https://doi.org/10.1139/T08-080
23.
Yamamuro
,
J. A.
and
Wood
,
F. M.
,
2004
, “
Effect of Depositional Method on the Undained Behavior and Microstructure of Sand With Silt
,”
Soil Dyn. Earthq. Eng.
, Vol.
24
, Nos.
9–10
, pp.
751
760
. https://doi.org/10.1016/j.soildyn.2004.06.004
24.
Yang
,
S. L.
,
Sandven
,
R.
, and
Grande
,
L.
,
2006
, “
Instability of Sand-Silt Mixtures
,”
Soil Dyn. Earthq. Eng.
, Vol.
26
, Nos.
2–4
, pp.
183
190
. https://doi.org/10.1016/j.soildyn.2004.11.027
25.
Yang
,
Z. X.
,
Li
,
X. S.
, and
Yang
,
J.
,
2008
, “
Quantifying and Modelling Fabric Anisotropy of Granular Soils
,”
Geotechnique
, Vol.
58
, No.
4
, pp.
237
248
. https://doi.org/10.1680/geot.2008.58.4.237
26.
Zlatovic
,
S.
and
Ishihara
,
K.
,
1997
, “
Normalized Behavior of Very Loose Non-Plastic Soils: Effects of Fabric
,”
Soils Found.
, Vol.
37
, No.
4
, pp.
47
56
. https://doi.org/10.3208/sandf.37.4_47
This content is only available via PDF.
You do not currently have access to this content.