Abstract

It is of great importance to simulate the excavation of foundation pits in centrifuge model tests. A new device was designed with new principles based on the understanding of the stress field in the soil base before and after excavation. A loading system was used to replace the excavated soil so that the appropriate self-weight stress state could be achieved with an increase of centrifugal acceleration before excavation. The compensation unit and the confining structure were simultaneously removed using the loading unit to simulate the excavation with accuracy. The device was made using a series of new structures for a high degree of automation and good accuracy in simulating the excavation of foundation pits. This device can be used to test a wide range of pit foundations and supporting structures. All of the components of the device were carefully designed to minimize their size and mass with a good control on the deformation of themselves. The device was confirmed to be effective in simulating the excavation of foundation pits at the 50-g level by a series of centrifuge model tests. The true paths of the stress and deformation of the foundation pit could be reasonably simulated in the centrifuge model tests, which cannot be captured by the traditional method in which the excavation was conducted previously at the 1-g level. The traditional method underestimates the earth pressures and the deformation of the soil due to the excavation of the foundation pit according to the comparison tests.

References

1.
Bolton
,
M. D.
and
Powrie
,
W.
,
1987
, “
Collapse of Diaphragm Walls Retaining Clay
,”
Géotechnique
, Vol.
37
, No.
3
, pp.
335
353
. https://doi.org/10.1680/geot.1987.37.3.335
2.
Brandenberg
,
S. J.
,
Boulanger
,
R. W.
,
Kutter
,
B. L.
, and
Chang
,
D.
,
2005
, “
Behavior of Pile Foundations in Laterally Spreading Ground During Centrifuge Tests
,”
J. Geotech. Geoenviron. Eng.
, Vol.
131
, No.
11
, pp.
1378
1391
. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:11(1378)https://doi.org/10.1061/(ASCE)1090-0241(2005)131:11(1378)
3.
Choo
,
Y. W.
,
Kim
,
D.
,
Park
,
J. H.
,
Kwak
,
K.
,
Kim
,
J. H.
, and
Kim
,
D. S.
,
2014
, “
Lateral Response of Large-Diameter Monopiles for Offshore Wind Turbines From Centrifuge Model Tests
,”
Geotech. Test. J.
, Vol.
37
, No.
1
, pp.
1
14
. https://doi.org/10.1520/GTJ20130081
4.
Choy
,
C. K.
,
Standing
,
J. R.
, and
Mair
,
R. J.
,
2014
, “
Centrifuge Modelling of Diaphragm Wall Construction Adjacent to Piled Foundations
,”
Geotech. Test. J.
, Vol.
37
, No.
4
, pp.
1
18
. https://doi.org/10.1520/GTJ20130191
5.
Conti
,
R.
,
Madabhushi
,
G. S. P.
, and
Viggiani
,
G. M. B.
,
2012
, “
On the Behaviour of Flexible Retaining Walls Under Seismic Actions
,”
Géotechnique
, Vol.
62
, No.
12
, pp.
1081
1094
. https://doi.org/10.1680/geot.11.P.029
6.
Do
,
T. N.
,
Ou
,
C. Y.
, and
Lim
,
A.
,
2013
, “
Evaluation of Factors of Safety Against Basal Heave for Deep Excavations in Soft Clay Using the Finite-Element Method
,”
J. Geotech. Geoenviron. Eng.
, Vol.
139
, No.
12
, pp.
2125
2135
. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000940
7.
Elshafie
,
M. Z. E. B.
,
Choy
,
C. K. C.
, and
Mair
,
R. J.
,
2013
, “
Centrifuge Modeling of Deep Excavations and Their Interaction With Adjacent Buildings
,”
Geotech. Test. J.
, Vol.
36
, No.
5
, pp.
1
12
. https://doi.org/10.1520/GTJ20120209
8.
Faheem
,
H.
,
Cai
,
F.
, and
Ugai
,
K.
,
2004
, “
Three-Dimensional Base Stability of Rectangular Excavations in Soft Soils Using FEM
,”
Comput. Geotech.
, Vol.
31
, No.
2
, pp.
67
74
. https://doi.org/10.1016/j.compgeo.2004.02.005
9.
Finno
,
R. J.
,
Blackburn
,
J. T.
, and
Roboski
,
J. F.
,
2007
, “
Three-Dimensional Effects for Supported Excavations in Clay
,”
J. Geotech. Geoenviron. Eng.
, Vol.
133
, No.
1
, pp.
30
36
. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:1(30)
10.
Hajialilue-Bonab
,
M.
,
Chazelas
,
J.
, and
Levacher
,
D.
,
2007
, “
Procedures Used for Dynamically Laterally Loaded Pile Tests in a Centrifuge
,”
Geotech. Test. J.
, Vol.
37
, No.
1
, pp.
1
9
. https://doi.org/10.1520/GTJ14072
11.
Hao
,
J.
,
Neilson
,
R. D.
,
Ivanović
,
A.
,
Li
,
J.
,
Starkey
,
A. J.
,
Rodger
,
A. A.
, and
Davies
,
M. C. R.
,
2009
, “
Design of a Robot and Test Procedure for the Dynamic Testing of Anchorages in a Geotechnical Centrifuge
,”
Geotech. Test. J.
, Vol.
32
, No.
4
, pp.
1
10
. https://doi.org/10.1520/GTJ102055
12.
Kong
,
L. G.
and
Zhang
,
L. M.
,
2007
, “
Rate-Controlled Lateral-Load Pile Tests Using a Robotic Manipulator in Centrifuge
,”
Geotech. Test. J.
, Vol.
37
, No.
1
, pp.
1
10
. https://doi.org/10.1520/GTJ13138
13.
Lam
,
S. Y.
,
Elshafie
,
M. Z. E. B.
,
Haigh
,
S. K.
, and
Bolton
,
M. D.
,
2012
, “
A New Apparatus for Modelling Excavations
,”
Int. J. Phys. Modell. Geotech.
, Vol.
12
, No.
1
, pp.
24
38
. https://doi.org/10.1680/ijpmg.2012.12.1.24
14.
Lee
,
C. J.
,
Wei
,
Y. C.
,
Chen
,
H. T.
,
Chang
,
Y. Y.
,
Lin
,
Y. C.
, and
Huang
,
W. S.
,
2011
, “
Stability Analysis of Cantilever Double Soldier-Piled Walls in Sandy Soil
,”
J. Chin. Inst. Eng.
, Vol.
34
, No.
4
, pp.
449
465
. https://doi.org/10.1080/02533839.2011.576488
15.
Li
,
M.
,
Zhang
,
G.
,
Zhang
,
J. M.
, and
Lee
,
C. F.
,
2011
, “
Centrifuge Model Tests on a Cohesive Soil Slope Under Excavation Conditions
,”
Soils Found.
, Vol.
51
, No.
5
, pp.
801
812
. https://doi.org/10.3208/sandf.51.801
16.
Ng
,
C. W. W.
,
Van Laak
,
P. A.
,
Zhang
,
L. M.
,
Tang
,
W. H.
,
Li
,
X. S.
, and
Xu
,
G. M.
,
2001
, “
Key Features of the HKUST Geotechnical Centrifuge
,”
Proceedings of the International Symposium on Geotechnical Centrifuge Modelling and Networking: Focusing on the Use and Application in the Pan-Pacific Region
,
Hong Kong
, December 8–9,
Hong Kong University of Science and Technology
,
Hong Kong
, pp.
66
69
.
17.
O'Rourke
,
T. D.
and
O'Donnell
,
C. J.
,
1997
, “
Deep Rotational Stability of Tiedback Excavations in Clay
,”
J. Geotech. Geoenviron. Eng.
, Vol.
123
, No.
6
, pp.
506
515
. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:6(506)
18.
Powrie
,
W.
and
Kantartiz
,
C.
,
1996
, “
Ground Response During Diaphragm Wall Installation in Clay, Centrifuge Model Tests
,”
Géotechnique
, Vol.
46
, No.
4
, pp.
725
739
. https://doi.org/10.1680/geot.1996.46.4.725
19.
Richards
,
D. J.
and
Powrie
,
W.
,
1998
, “
Centrifuge Model Tests on Doubly Propped Embedded Retaining Walls in Over Consolidated Kaolin Clay
,”
Géotechnique
, Vol.
48
, No.
6
, pp.
833
846
. https://doi.org/10.1680/geot.1998.48.6.833
20.
Takemura
,
J.
,
Kondoh
,
M.
,
Esaki
,
T.
,
Kouda
,
M.
, and
Kusakabe
,
O.
,
1999
, “
Centrifuge Model Tests on Double Propped Wall Excavation in Soft Clay
,”
Soils Found.
, Vol.
39
, No.
3
, pp.
75
87
. https://doi.org/10.3208/sandf.39.3_75
21.
Wang
,
L. P.
and
Zhang
,
G.
,
2015
, “
In Flight Simulation of Pile Installation in Slopes in Centrifuge Model Tests
,”
Geotech. Test. J.
, Vol.
38
, No.
1
, pp.
50
60
. https://doi.org/10.1520/GTJ20130169
22.
Zhang
,
G.
,
Hu
,
Y.
, and
Zhang
,
J. M.
,
2009
, “
New Image-Analysis-Based Displacement-Measurement System for Centrifuge Modeling Tests
,”
Measurement
, Vol.
42
, No.
1
, pp.
87
96
. https://doi.org/10.1016/j.measurement.2008.04.002
23.
Zhang
,
G.
,
Li
,
M.
, and
Wang
,
L. P.
,
2014
, “
Analysis of the Effect of the Loading Path on the Failure Behaviour of Slopes
,”
KSCE J. Civ. Eng.
, Vol.
18
, No.
7
, pp.
2080
2084
. https://doi.org/10.1007/s12205-014-1461-7
24.
Zhang
,
G.
,
Qian
,
J. Y.
,
Wang
,
R.
, and
Zhang
,
J. M.
,
2011
, “
Centrifuge Model Test Study of Rainfall-Induced Deformation of Cohesive Soil Slopes
,”
Soils Found.
, Vol.
51
, No.
2
, pp.
297
305
. https://doi.org/10.3208/sandf.51.297
This content is only available via PDF.
You do not currently have access to this content.