Abstract

This paper examines permeability test results with packed spheres and non-plastic soils. Most tests on packed spheres were performed in physics and chemistry, using liquids or gases to measure the intrinsic permeability, K (m2). All K (m2) were converted into saturated hydraulic conductivity ksat (m/s). Equal spheres and spheres having a unimodal or multimodal grain size distribution curve (GSDC) were tested. We point out interesting differences between the approaches in physics, geotechnique, and hydrogeology, then discuss difficulties with testing methods, before analyzing all test data. We propose a method to fit a GSDC with either a single, or a sum of lognormal equations, which gives a closed-form expression for the specific surface. Then, we assess the performance of predictive methods for ksat, including the Kozeny–Carman equation. A few methods, which use only a mean particle size, are shown to give excellent predictions for equal spheres and unimodal packings. Other methods, which use the effective size d10 and the void ratio e, are also shown to give excellent predictions for packed spheres and non-plastic soils, in the ranges for which they were initially developed. A new equation is proposed, which successfully predicts ksat in the range from 1 to 10−10 m/s, when the parameter [d102e3/(1+e)] varies from 10−9 to 102 mm2, for spheres and non-plastic natural soils.

References

1.
Al-Tabbaa
,
A.
and
Wood
,
D. M.
,
1987
, “
Some Measurements of the Permeability of Kaolin
,”
Géotechnique
, Vol.
37
, No.
4
, pp.
499
503
. https://doi.org/10.1680/geot.1987.37.4.499
2.
ASTM D2434-13,
2013
:
Standard Test Method for Permeability of Granular Soils (Constant Head)
, ASTM International, West Conshohocken, PA, www.astm.org.
3.
Aubertin
,
M.
,
Bussière
,
B.
, and
Chapuis
,
R. P.
,
1996
, “
Hydraulic Conductivity of Homogenized Tailings From Hard Rock Mines
,”
Can. Geotech. J.
, Vol.
33
, No.
3
, pp.
470
482
. https://doi.org/10.1139/t96-068
4.
Baptiste
,
N.
and
Chapuis
,
R. P.
,
2015
, “
What Maximum Permeability Can Be Measured With a Monitoring Well?
Eng. Geol.
, Vol.
184
, pp.
111
118
. https://doi.org/10.1016/j.enggeo.2014.11.006
5.
Blazejewski
,
R.
and
Murat-Blazejewska
,
S.
,
2014
, “
Resistance to Creeping Flow and Permeability of Stacked Spheres
,”
J. Por. Media
, Vol.
17
, No.
8
, pp.
731
740
. https://doi.org/10.1615/JPorMedia.v17.i8.70
6.
Blott
,
S. J.
and
Pye
,
K.
,
2006
, “
Particle Size Distribution Analysis of Sand-Sized Particles by Laser Diffraction: An Experimental Investigation of Instrument Sensitivity and the Effects of Particle Shape
,”
Sedimentology
, Vol.
53
, No.
3
, pp.
671
685
. https://doi.org/10.1111/j.1365-3091.2006.00786.x
7.
Bryant
,
S. L.
,
King
,
P. R.
, and
Mellor
,
D. W.
,
1993
, “
Network Model Evaluation of Permeability and Spatial Correlation in a Real Random Sphere Packing
,”
Transp. Por. Media
, Vol.
11
, No.
1
, pp.
53
70
. https://doi.org/10.1007/BF00614635
8.
Carman
,
P. C.
,
1937
, “
Fluid Flow Through Granular Beds
,”
Trans. Inst. Chem. Eng., London
, Vol.
15
, pp.
150
166
.
9.
Chapuis
,
R. P.
,
1990
, “
Sand–Bentonite Liners: Predicting Permeability From Laboratory Tests
,”
Can. Geotech. J.
, Vol.
27
, No.
1
, pp.
47
57
. https://doi.org/10.1139/t90-005
10.
Chapuis
,
R. P.
,
1990
, “
Sand–Bentonite Liners: Field Control Methods
,”
Can. Geotech. J.
, Vol.
27
, No.
1
, pp.
216
223
. https://doi.org/10.1139/t90-025
11.
Chapuis
,
R. P.
,
1992
, “
Similarity of Internal Stability Criteria for Granular Soils
,”
Can. Geotech. J.
, Vol.
29
, No.
4
, pp.
711
713
. https://doi.org/10.1139/t92-078
12.
Chapuis
,
R. P.
,
1995
, “
Controlling the Quality of Groundwater Parameters: Some Examples
,”
Can. Geotech. J.
, Vol.
32
, No.
1
, pp.
172
177
. https://doi.org/10.1139/t95-014
13.
Chapuis
,
R. P.
,
2002
, “
The 2000 R.M. Hardy Lecture: Full–Scale Hydraulic Performance of Soil–Bentonite and Compacted Clay Liners
,”
Can. Geotech. J.
, Vol.
39
, No.
2
, pp.
417
439
. https://doi.org/10.1139/t01-092
14.
Chapuis
,
R. P.
,
2004
, “
Predicting the Saturated Hydraulic Conductivity of Sand and Gravel Using Effective Diameter and Void Ratio
,”
Can. Geotech. J.
, Vol.
41
, No.
5
, pp.
787
795
. https://doi.org/10.1139/t04-022
15.
Chapuis
,
R. P.
,
2004
, “
Permeability Tests in Rigid-Wall Permeameters: Determining the Degree of Saturation, Its Evolution and Influence on Test Results
,”
Geotech. Test. J.
, Vol.
27
, No.
3
, pp.
304
313
. https://doi.org/10.1520/GTJ10905
16.
Chapuis
,
R. P.
,
2012
, “
Predicting the Saturated Hydraulic Conductivity of Soils: A Review
,”
Bull. Eng. Geol. Environ.
, Vol.
71
, No.
3
, pp.
401
434
. https://doi.org/10.1007/s10064-012-0418-7
17.
Chapuis
,
R. P.
,
2012
, “
Estimating the In Situ Porosity of Sandy Soils Sampled in Boreholes
,”
Eng. Geol.
, Vols.
141–142
, pp.
57
64
. https://doi.org/10.1016/j.enggeo.2012.04.015
18.
Chapuis
,
R. P.
,
2013
, “
Full-Scale Evaluation of the Performance of Three Compacted Clay Liners
,”
Geotech. Test. J.
, Vol.
36
, No.
4
, pp.
575
583
. https://doi.org/10.1520/GTJ20120198
19.
Chapuis
,
R. P.
,
2013
, “
Permeability Scale Effects in Sandy Aquifers: A Few Case Studies
,”
Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering
,
Paris
, Sept 2–6,
2013
,
Balkema
,
Leiden, The Netherlands
, pp.
505
510
.
20.
Chapuis
,
R. P.
and
Aubertin
,
M.
,
2003
, “
On the Use of the Kozeny–Carman's Equation to Predict the Hydraulic Conductivity of a Soil
,”
Can. Geotech. J.
, Vol.
40
, No.
3
, pp.
616
628
. https://doi.org/10.1139/t03-013
21.
Chapuis
,
R. P.
and
Gill
,
D. E.
,
1989
, “
Hydraulic Anisotropy of Homogeneous Soils and Rocks: Influence of the Densification Process
,”
Bull. Int. Assoc. Eng. Geol.
, Vol.
39
, No.
1
, pp.
75
86
. https://doi.org/10.1007/BF02592538
22.
Chapuis
,
R. P.
and
Légaré
,
P. P.
,
1992
, “
A Simple Method for Determining the Surface Area of Fine Aggregates and Fillers in Bituminous Mixtures
,”
Effects of Aggregates and Mineral Fillers on Asphalt Mixture Performance, ASTM STP 1147
,
ASTM International
,
West Conshohocken, PA
, pp.
177
186
.
23.
Chapuis
,
R. P.
and
Tournier
,
J. P.
,
2006
, “
Simple Graphical Methods to Assess the Risk of Internal Erosion
,”
Proceedings, ICOLD 2006
,
Barcelona
, June 18,
2006
,
Balkema
,
Leiden, The Netherlands
, pp.
319
335
.
24.
Chapuis
,
R. P.
,
Baass
,
K.
, and
Davenne
,
L.
,
1989
, “
Granular Soils in Rigid-Wall Permeameters: Method for Determining the Degree of Saturation
,”
Can. Geotech. J.
, Vol.
26
, No.
1
, pp.
71
79
. https://doi.org/10.1139/t89-008
25.
Chapuis
,
R. P.
,
Gill
,
D. E.
, and
Baass
,
K.
,
1989
, “
Laboratory Permeability Tests on Sand: Influence of the Compaction Method on Anisotropy
,”
Can. Geotech. J.
, Vol.
26
, No.
4
, pp.
614
622
. https://doi.org/10.1139/t89-074
26.
Chapuis
,
R. P.
,
Lavoie
,
J.
, and
Girard
,
D.
,
1992
, “
Design, Construction, Performance and Repairs of the Soil–Bentonite Liners of Two Lagoons
,”
Can. Geotech. J.
, Vol.
29
, No.
4
, pp.
638
649
. https://doi.org/10.1139/t92-071
27.
Chapuis
,
R. P.
,
Contant
,
A.
, and
Baass
,
K. A.
,
1996
, “
Migration of Fines in 0–20 mm Crushed Base During Placement, Compaction, and Seepage Under Laboratory Conditions
,”
Can. Geotech. J.
, Vol.
33
, No.
1
, pp.
168
176
. https://doi.org/10.1139/t96-032
28.
Chapuis
,
R. P.
,
Dallaire
,
V.
,
Marcotte
,
D.
,
Chouteau
,
M.
,
Acevedo
,
N.
, and
Gagnon
,
F.
,
2005
, “
Evaluating the Hydraulic Conductivity at Three Different Scales Within an Unconfined Aquifer at Lachenaie, Quebec
,”
Can. Geotech. J.
, Vol.
42
, No.
4
, pp.
1212
1220
. https://doi.org/10.1139/t05-045
29.
Chapuis
,
R. P.
,
Mbonimpa
,
M.
,
Dagenais
,
A. M.
, and
Aubertin
,
M.
,
2006
, “
A Linear Graphical Method to Predict the Effect of Compaction on the Hydraulic Conductivity of Clay Liners and Covers
,”
Bull. Eng. Geol. Environ.
, Vol.
65
, No.
1
, pp.
93
98
. https://doi.org/10.1007/s10064-005-0031-0
30.
Chapuis
,
R. P.
,
Weber
,
S.
, and
Duhaime
,
F.
,
2012
, “
Discussion of ‘Intrinsic Permeability of Materials Ranging From Sand to Rock-Fill Using Natural Air Convection Tests: Discussion
,’”
Can. Geotech. J.
, Vol.
49
, No.
11
, pp.
1319
1322
. https://doi.org/10.1139/t2012-073
31.
Chapuis
,
R. P.
,
Dallaire
,
V.
, and
Saucier
,
A.
,
2014
, “
Getting Information From Modal Decomposition of Grain Size Distribution Curves
,”
Geotech. Test. J.
, Vol.
37
, No.
2
, pp.
282
295
. https://doi.org/10.1520/GTJ20120218
32.
Civan
,
F.
,
2001
, “
Scale Effect on Porosity and Permeability: Kinetics, Model and Correlation
,”
AIChE J.
, Vol.
47
, No.
2
, pp.
271
287
. https://doi.org/10.1002/aic.690470206
33.
Coelho
,
D.
,
Thovert
,
J. F.
, and
Adler
,
P. M.
,
1997
, “
Geometrical and Transport Properties of Random Packings of Spheres and Aspherical Particles
,”
Phys. Rev. E
, Vol.
55
, No.
2
, pp.
1959
1978
. https://doi.org/10.1103/PhysRevE.55.1959
34.
Côté
,
J.
,
Fillion
,
M. H.
, and
Konrad
,
J. M.
,
2011
, “
Intrinsic Permeability of Materials Ranging From Sand to Rock-Fill Using Natural Air Convection Tests
,”
Can. Geotech. J.
, Vol.
48
, No.
5
, pp.
679
690
. https://doi.org/10.1139/t10-097
35.
Cyr
,
R. Y.
and
Chiasson
,
P.
,
1999
, “
Modeling Subsoil Drainage Systems for Urban Roadways
,”
Can. Geotech. J.
, Vol.
26
, No.
6
, pp.
799
809
. https://doi.org/10.1139/l99-048
36.
Dallavale
,
J. M.
,
1948
,
Micromeritics—The Technology of Fine Particles
, 2nd ed.,
Pitman
,
New York
.
37.
Dickin
,
E. A.
,
1973
, “
Influence of Grain Size and Shape Upon the Limiting Porosities of Sand
,”
Evaluation of Relative Density and its Role in Geotechnical Projects Involving Cohesionless Soils, ASTM STP 523
,
ASTM International
,
West Conshohocken, PA
, pp.
113
120
.
38.
Duhaime
,
F.
,
Chapuis
,
R. P.
, and
Weber
,
S.
,
2015
, “
Parasitic Head Losses During Laboratory Permeability Tests
,”
Geotech. Test. J.
, Vol.
38
, No.
2
, pp.
255
260
. https://doi.org/10.1520/GTJ20130175
39.
du Toit
,
C. G.
,
2008
, “
Radial Variation in Porosity in Annular Packed Beds
,”
Nucl. Eng. Design
, Vol.
238
, No.
11
, pp.
3073
3079
. https://doi.org/10.1016/j.nucengdes.2007.12.018
40.
Ergun
,
S.
,
1952
, “
Fluid Flow Through Packed Columns
,”
Chem. Eng. Prog.
, Vol.
48
, No.
2
, pp.
89
94
.
41.
Fand
,
R. M.
,
Kim
,
B. Y. K.
,
Lam
,
A. C. C.
, and
Phan
,
R. T.
,
1987
, “
Resistance to the Flow of Fluids Through Simple and Complex Porous Media Whose Matrices Are Composed of Randomly Packed Spheres
,”
J. Fluids Eng.
, Vol.
109
, No.
3
, pp.
268
274
. https://doi.org/10.1115/1.3242658
42.
Farkas
,
T.
,
Zhong
,
G.
, and
Guiochon
,
G.
,
1999
, “
Validity of Darcy's Law at Low Flow-Rates in Liquid Chromatography
,”
J. Chromatogr. A
, Vol.
849
, No.
1
, pp.
35
43
. https://doi.org/10.1016/S0021-9673(99)00482-3
43.
Ferrandon
,
J.
,
1948
, “
Les lois d'écoulement de filtration [The seepage filtration laws]
,”
Le Génie Civil
, Vol.
125
, No.
2
, pp.
24
28
(in French).
44.
Franzini
,
J. B.
,
1968
, “
Wall Effects in Permeameters: Discussion
,”
J. Hydraul. Div.
, Vol.
94
, No.
4
, pp.
1148
1150
.
45.
Glover
,
P. W. J.
and
Walker
,
E.
,
2009
, “
Grain–Size to Effective Pore-Size Transformation Derived From Electrokinetic Theory
,”
Geophysics
, Vol.
74
, No.
1
, pp.
E17
E29
. https://doi.org/10.1190/1.3033217
46.
Glover
,
P. W. J.
,
Zadjali
,
I. I.
, and
Frew
,
K. A.
,
2006
, “
Permeability Prediction From MICP and NMR Data Using an Electrokinetic Approach
,”
Geophysics
, Vol.
71
, No.
4
, pp.
F49
F60
. https://doi.org/10.1190/1.2216930
47.
Gregg
,
S. J.
and
Sing
,
K. W. S.
,
1967
,
Adsorption, Surface Area and Porosity
,
Academic
,
London
.
48.
Hargrove
,
G. L.
and
Sawyer
,
D. T.
,
1967
, “
Porosity, Permeability, Gas Diffusion, and Carrier Gas Velocity in Packed Gas Chromatographic Columns
,”
Anal. Chem.
, Vol.
39
, No.
8
, pp.
945
948
. https://doi.org/10.1021/ac60252a005
49.
Harleman
,
D. R. F.
,
Mehlhorn
,
P. F.
, and
Rumer
,
R. R.
, Jr.
,
1963
, “
Dispersion–Permeability Correlation in Porous Media
,”
J. Hydraul. Div.
, Vol.
89
, No.
2
, pp.
67
85
. https://doi.org/10.1205/cherd07017
50.
Hazen
,
A.
,
1892
, “
Some Physical Properties of Sand and Gravel, with Special Reference to Their Use in Filtration
,” Massachusetts State Board of Health, 24th Annual Report,
Massachusetts Department of Public Health
, Boston, pp.
539
556
.
51.
Hazen
,
A.
,
1911
, “
Dams on Sand Formations: Discussion
,”
Trans. ASCE
, Vol.
73
, pp.
199
203
.
52.
Hyman
,
J. D.
,
Smolarkiewicz
,
P. K.
, and
Winter
,
C. L.
,
2013
, “
Pedotransfer Functions for Permeability: A Computational Study at Pore Scales
,”
Water Res. Res.
, Vol.
49
, No.
4
, pp.
2080
2092
. https://doi.org/10.1002/wrcr.20170
53.
Kaviany
,
M.
,
1995
,
Principles of Heat Transfer in Porous Media
, 2nd ed.,
Springer
,
New York
.
54.
Kececioglu
,
I.
and
Jiang
,
Y.
,
1994
, “
Flow Through Porous Media of Packed Spheres Saturated With Water
,”
J. Fluids Eng.
, Vol.
116
, No.
1
, pp.
164
170
. https://doi.org/10.1115/1.2910229
55.
Kenney
,
T. C.
and
Chan
,
H. T.
,
1973
, “
Laboratory Investigation of Permeability Ratio of New Liskeard Varved Clay
,”
Can. Geotech. J.
, Vol.
10
, No.
3
, pp.
453
472
. https://doi.org/10.1139/t73-038
56.
Lemaitre
,
R.
and
Adler
,
P. M.
,
1990
, “
Fractal Porous Media IV: Three Dimensional Stokes Flow Through Random Media and Regular Fractals
,”
Transp. Por. Media
, Vol.
5
, No.
4
, pp.
325
340
. https://doi.org/10.1007/BF01141990
57.
Li
,
M.
and
Ma
,
W.
,
2011
, “
Experimental Characterization of the Effective Particle Diameter of a Particulate Bed Packed With Multi-Diameter Spheres
,”
Nucl. Eng. Design
, Vol.
241
, No.
5
, pp.
1736
1745
. https://doi.org/10.1016/j.nucengdes.2011.03.013
58.
Loudon
,
A. G.
,
1952
, “
The Computation of Permeability From Simple Soil Tests
,”
Géotechnique
, Vol.
3
, No.
4
, pp.
165
183
. https://doi.org/10.1680/geot.1952.3.4.165
59.
MacDonald
,
I. F.
,
El–Sayed
,
M. S.
,
Mow
,
K.
, and
Dullien
,
F. A. L.
,
1979
, “
Flow Through Porous Media: The Ergun Equation Revisited
,”
Ind. Eng. Chem. Fund.
, Vol.
18
, No.
3
, pp.
199
208
. https://doi.org/10.1021/i160071a001
60.
MacDonald
,
M. J.
,
Chu
,
C. F.
,
Guilloit
,
P. P.
, and
Ng
,
M. K.
,
1991
, “
A Generalized Blake–Kozeny Equation for Multisized Spherical Particles
,”
AIChE J.
, Vol.
37
, No.
10
, pp.
1583
1588
. https://doi.org/10.1002/aic.690371016
61.
Macini
,
P.
,
Mesini
,
E.
, and
Viola
,
R.
,
2008
, “
Non-Darcy Flow: Laboratory Measurements in Unconsolidated Porous Media
,” SPE 113772, Society of Petroleum Engineers, Richardson, TX, pp.
1562
1576
. https://doi.org/10.2118/113772-MS
62.
Macini
,
P.
,
Mesini
,
E.
, and
Viola
,
R.
,
2011
, “
Laboratory Measurements of Non-Darcy Flow Coefficients in Natural and Artificial Unconsolidated Porous Media
,”
J. Petrol. Sci. Eng.
, Vol.
77
, Nos.
3–4
, pp.
365
374
. https://doi.org/10.1016/j.petrol.2011.04.016
63.
Martys
,
N. S.
,
Torquato
,
S.
, and
Bentz
,
D. P.
,
1994
, “
Universal Scaling of Fluid Permeability for Sphere Packings
,”
Phys. Rev. E
, Vol.
50
, No.
1
, pp.
403
408
. https://doi.org/10.1103/PhysRevE.50.403
64.
Mbonimpa
,
M.
,
Aubertin
,
M.
,
Chapuis
,
R. P.
, and
Bussière
,
B.
,
2002
, “
Practical Pedotransfer Functions for Estimating the Saturated Hydraulic Conductivity
,”
Geotech. Geol. Eng.
, Vol.
20
, No.
3
, pp.
235
259
. https://doi.org/10.1023/A:1016046214724
65.
Mota
,
M.
,
Teixeira
,
J. A.
,
Bowen
,
R. W.
, and
Yelshin
,
A.
,
2001
, “
Binary Spherical Particle Mixed Beds: Porosity and Permeability Relationship Measurement
,”
Trans. Filtration Soc.
, Vol.
1
, No.
4
, pp.
101
106
.
66.
Mourzenko
,
V.
,
Thovert
,
J. F.
,
Vizika
,
O.
, and
Adler
,
P. M.
,
2008
, “
Geometrical and Transport Properties of Random Packings of Polydisperse Spheres
,”
Phys. Rev. E
, Vol.
77
, No.
6
, pp.
1
14
. https://doi.org/10.1103/PhysRevE.77.066306
67.
Orr
,
C. C.
and
Dallavale
,
J. M.
,
1959
,
Fine Particle Measurement Size Surface and Pore Volume
,
MacMillan
,
New York
.
68.
Pan
,
C. X.
,
Hilpert
,
M.
, and
Miller
,
C. T.
,
2001
, “
Pore Scale Modelling of Saturated Permeabilities in Random Sphere Packings
,”
Phys. Rev. E
, Vol.
64
, No.
6
, pp.
1
9
. https://doi.org/10.1103/PhysRevE.64.066702
69.
Piñero
,
E.
,
Molina
,
J. M.
,
Narciso
,
J.
,
García-Cordovilla
,
C.
, and
Louis
,
E.
,
2008
, “
The Intrinsic Permeability of Packed SiC Particles With Monomodal and Bimodal Size Distributions
,”
J. Compos. Mater.
, Vol.
42
, No.
26
, pp.
2795
2804
.
70.
Rowe
,
R. K.
,
Armstrong
,
M. D.
, and
Cullimore
,
D. R.
,
2001
, “
Particle Size and Clogging of Granular Media Permeated With Leachate
,”
J. Geotech. Geoenviron. Eng.
, Vol.
126
, No.
9
, pp.
775
786
. https://doi.org/10.1061
71.
Rumpf
,
H.
and
Gupte
,
A. R.
,
1975
, “
The Influence of Porosity and Grain Size Distribution on the Permeability Equation of Porous Flow
,”
Chemie Ingenieur Technik (Weinheim)
, Vol.
43
, No.
6
, pp.
367
375
(in German).
72.
Scholes
,
O. N.
,
Clayton
,
S. A.
,
Hoadley
,
A. F. A.
, and
Tiu
,
C.
,
2007
, “
Permeability Anisotropy Due to Consolidation of Compressible Porous Media
,”
Transp. Por. Media
, Vol.
68
, No.
3
, pp.
365
387
. https://doi.org/10.1007/s11242-006-9048-5
73.
Souza Pinto
,
T. C.
,
Lima
,
O. A.
, and
Leal Filho
,
L. S.
,
2009
, “
Sphericity of Apatite Particles Determined by Gas Permeability Through Packed Beds
,”
Miner. Metall. Proc.
, Vol.
26
, No.
2
, pp.
105
108
.
74.
Taylor
,
D. W.
,
1948
,
Fundamentals of Soil Mechanics
,
Wiley
,
New York
.
75.
Terzaghi
,
K. T.
,
1943
,
Theoretical Soil Mechanics
,
Wiley
,
New York.
76.
Thies-Weesie
,
D. M. E.
and
Philipse
,
A. P.
,
1994
, “
Liquid Permeation of Bidisperse Colloid Hard–Sphere Packings and the Kozeny–Carman Scaling Relation
,”
J. Colloid Interf. Sci.
, Vol.
162
, No.
2
, pp.
470
480
. https://doi.org/10.1006/jcis.1994.1062
77.
Wyllie
,
M. R. J.
and
Gregory
,
A. R.
,
1955
, “
Fluid Flow Through Unconsolidated Porous Aggregates: Effect of Porosity and Particle Shape on Kozeny Carman Constants
,”
Ind. Eng. Chem.
, Vol.
47
, No.
7
, pp.
1379
1388
. https://doi.org/10.1021/ie50547a037
78.
Youd
,
T. L.
,
1973
, “
Factors Controlling Maximum and Minimum Densities of Sands
,”
Evaluation of Relative Density and its Role in Geotechnical Projects Involving Cohesionless Soils, ASTM STP 523
,
ASTM International
,
West Conshohocken, PA
, pp.
98
112
.
This content is only available via PDF.
You do not currently have access to this content.