Abstract

Specific gravity tests were performed on chromium ore processing residue (COPR), an expansive industrial byproduct of the historical processing of chromite ore, to determine if the complexity and heterogeneity of the particle microstructure may cause erroneous specific gravity results using ASTM D854-06 Method B as the baseline procedure. In complex, reactive industrial residuals such as COPR, specific gravity is an important indicator of the extent of weathering that has occurred. Specific gravity for weathered hard-brown (HB) COPR significantly differs from that of unweathered gray-black (GB) COPR, and laboratory testing can indicate the position of COPR along the GB to HB pathway. The difference between a “true” and an “apparent” specific gravity that accounts for the inclusion of closed pores was determined. Oven-drying of COPR at the ASTM standard temperature of 110±5°C does not cause mineral dehydration to affect specific gravity results. The apparent (avg.=3.146) and true (avg.=3.355) specific gravities of GB COPR are statistically different and should be reported as such. Pre-processing of GB COPR by mechanical grinding is necessary to open intraparticle voids, determined to be 6.2 % by volume, to the atmosphere and thus approach the true specific gravity.

References

1.
ASTM C188-95,
2003
, “
Standard Test Method for Density of Hydraulic Cement
, Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA.
2.
ASTM D854–06,
2006
, “
Standard Test Method for Specific Gravity of Soil Solids by Water Pycnometer
, Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA.
3.
ASTM D2216-05,
2005
, “
Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass
, Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA.
4.
Blake
,
G. R.
,
1965
, “
Particle Density
,”
Methods of Soil Analysis: Part 1
,
American Society of Agronomy
,
Madison, WI
, pp.
371
373
.
5.
Burke
,
T.
,
Fagliano
,
J.
,
Goldoft
,
M.
,
Hazen
,
R. E.
, and
Iglewicz
,
R.
,
1991
, “
Chromite Ore Processing Residue in Hudson County, New Jersey
,”
Environ. Health Perspect.
 0091-6765, Vol.
92
, pp.
131
137
. https://doi.org/10.2307/3431149
6.
Chrysochoou
,
M.
and
Dermatas
,
D.
,
2007
, “
Application of the Rietveld Method to Assess Chromium (VI) Speciation in Chromite Ore Processing Residue
,”
J. Hazard. Mater.
 0304-3894, Vol.
141
, No.
2
, pp.
370
377
. https://doi.org/10.1016/j.jhazmat.2006.05.081
7.
Chrysochoou
,
M.
,
Fakra
,
S.
,
Marcus
,
M.
,
Moon
,
D. H.
, and
Dermatas
,
D.
,
2009
, “
Microstructural Analyses of Cr(VI) Speciation in Chromite Ore Processing Residue (COPR)
,”
Environ. Sci. Technol.
 0013-936X, Vol.
43
, pp.
5461
5466
. https://doi.org/10.1021/es9005338
8.
Dermatas
,
D.
,
Chrysochoou
,
M.
,
Moon
,
D. H.
,
Kaouris
,
M.
,
Morris
,
J.
, and
French
,
C.
,
2008
,
GeoCongress 2008: Geotechnics of Waste Management and Remediation
, New Orleans, Louisiana,
2008
,
ASCE
,
Washington, D.C.
9.
Gradwell
,
M. W.
,
1955
, “
The Determination of Specific Gravities of Soils as Influenced by Clay-Mineral Composition
,”
New Zealand J. Sci. Tech. Sec. B
, Vol.
37
, pp.
283
289
.
10.
Hillier
,
S.
,
Roe
,
M. J.
,
Geelhoed
,
J. S.
,
Fraser
,
A. R.
,
Farmer
,
J. G.
, and
Paterson
,
E.
,
2003
, “
Role of Quantitative Mineralogical Analysis in the Investigation of Sites Contaminated by Chromite Ore Processing Residue
,”
Sci. Total Environ.
 0048-9697, Vol.
308
, pp.
195
210
. https://doi.org/10.1016/S0048-9697(02)00680-0
11.
International Centre for Diffraction Data (ICDD)
,
1998
, “
Powder Diffraction File, PDF-2 Database Release 1998
,” announcement of new database release.
12.
Meegoda
,
J. N.
,
Kamolpornwijit
,
W.
,
Vaccari
,
D. A.
,
Ezeldin
,
A. S.
,
Noval
,
B. A.
,
Mueller
,
R. T.
, and
Santora
,
S.
,
1999
, “
Remediation of Chromium-Contaminated Soils: Bench-Scale Investigation
,
Pract. Period. Hazard. Toxic Radioact. Waste Manage.
 1090-025X, Vol.
3
, No.
3
, pp.
124
131
. https://doi.org/10.1061/(ASCE)1090-025X(1999)3:3(124)
13.
Meller
,
N.
,
Hall
,
C.
,
Jupe
,
A. C.
,
Colston
,
S. L.
,
Jacques
,
S. D. M.
,
Barnes
,
P.
, and
Phipps
,
J.
,
2004
, “
The Paste Hydration of Brownmillerite with and without Gypsum: A Time Resolved Synchrotron Diffraction Study at 30, 70, 100, and 150°C
,”
J. Mater. Chem.
 0959-9428, Vol.
14
, pp.
428
435
. https://doi.org/10.1039/b313215c
14.
Montgomery
,
D. C.
,
Runger
,
G. C.
, and
Hubele
,
N. F.
,
2007
,
Engineering Statistics
,
John Wiley & Sons, Inc.
,
Hoboken, NJ
.
15.
Moon
,
D. H.
,
Dermatas
,
D.
,
Chrysochoou
,
M.
, and
Shen
,
G.
,
2006
, “
An Investigation of the Heaving Mechanism Related to Chromite Ore Processing Residue
,”
J. ASTM Int.
 1546-962X, Vol.
3
, No.
6
, paper ID JAI13309. https://doi.org/10.1520/JAI13309
16.
Raghu
,
D.
and
Hsieh
,
H.
,
1989
, “
Origin, Properties and Disposal Problems of Chromium Ore Residue
,”
Int. J. Environ. Stud.
 0020-7233, Vol.
34
, pp.
227
235
. https://doi.org/10.1080/00207238908710532
17.
Smith
,
W. O.
,
1943
, “
Density of Soil Solids and Their Genetic Relations
,”
Soil Science
, Vol.
56
, No.
4
, pp.
263
271
. https://doi.org/10.1097/00010694-194310000-00002
18.
Tamari
,
S.
,
Samaniego-Martinez
,
D.
,
Bonola
,
I.
,
Bandala
,
E. R.
, and
Ordaz-Chaparro
,
V.
,
2005
, “
Particle Density of Volcanic Scoria Determined by Water Pycnometry
,”
Geotech. Test. J.
 0149-6115, Vol.
28
, No.
4
, paper ID GTJ12675.
19.
Tinjum
,
J. M.
,
Benson
,
C. H.
, and
Edil
,
T. B.
,
2008
, “
Mobilization of Cr(VI) from Chromite Ore Processing Residue Through Acid Treatment
,”
Sci. Total Environ.
 0048-9697, Vol.
391
, pp.
13
25
. https://doi.org/10.1016/j.scitotenv.2007.10.041
20.
Tinjum
,
J. M.
,
Christopher
,
H.
, and
French
,
C.
,
2008
, “
Field Investigation Techniques for Characterization and Delineation of COPR
,”
GeoCongress 2008: Geotechnics of Waste Management and Remediation
, New Orleans, Louisiana,
2008
,
ASCE
,
Washington, D.C.
21.
Wesley
,
L. D.
,
2001
, “
Determination of Specific Gravity and Void Ratio of Pumice Materials
,”
Geotech. Test. J.
 0149-6115, Vol.
24
, No.
4
, pp.
418
422
. https://doi.org/10.1520/GTJ11139J
This content is only available via PDF.
You do not currently have access to this content.