Abstract

Electrical resistivity tomography (ERT) allows for fast, non-destructive, and efficient sediment characterization and geotechnical process monitoring in the field as well as in laboratory applications. Besides the spatial distribution of resistivity, specimen geometry and electrode configuration determine the electrical potential distribution and the ensuing spatial resolution in the tomogram. We examine potential and current density distribution in various ERT system configurations using both experimental and numerical methods and explore optimal electrode configurations for cylindrical cells. Results show that optimal ERT configurations must take into consideration the required spatial resolution, sensitivity to anomalies, signal strength, and shunting effects along the cell perimeter. The system characteristics are defined in terms of electrode width Welec and length Lelec, cell diameter Dcell, and the distance from the electrode plane to conductive end-plates δ. The following dimensionless ratios emerge as guidelines for system pre-design: Welec/Dcell≈π/2n, Lelec /Dcell ≈0.4, δ/Dcell≥1, where n is the number of electrodes around the perimeter.

References

1.
Avis
,
N. J.
and
Barber
,
D. C.
,
1994
, “
Image-Reconstruction Using Non-Adjacent Drive Configurations
,”
Physiol. Meas.
, Vol.
15
, pp.
A153
A160
. https://doi.org/10.1088/0967-3334/15/2A/020
2.
Booth
,
M. J.
and
BasarabHorwath
,
I.
,
1996
, “
Comparing Electrode Configurations for Electrical Impedance Tomography
,”
Electron. Lett.
 0013-5194, Vol.
32
(
7
), pp.
648
649
. https://doi.org/10.1049/el:19960414
3.
Borsic
,
A.
,
Comina
,
C.
,
Foti
,
S.
,
Lancellotta
,
R.
, and
Musso
,
G.
,
2005
, “
Imaging Heterogeneities with Electrical Impedance Tomography: Laboratory Results
,”
Geotechnique
 0016-8505, Vol.
55
(
7
), pp.
539
547
. https://doi.org/10.1680/geot.2005.55.7.539
4.
Cohen-Bacrie
,
C.
,
Goussard
,
Y.
, and
Guardo
,
R.
,
1997
, “
Regularized Reconstruction in Electrical Impedance Tomography Using a Variance Uniformization Constraint
,”
IEEE Trans. Med. Imaging
 0278-0062, Vol.
16
(
5
), pp.
562
571
. https://doi.org/10.1109/42.640745
5.
Comina
,
C.
,
Foti
,
S.
,
Musso
,
G.
, and
Romero
,
E.
,
2008
, “
EIT Oedometer: An Advanced Cell to Monitor Spatial and Time Variability in Soil with Electrical and Seismic Measurements
,”
Geotech. Test. J.
 0149-6115, Vol.
31
(
5
), pp.
1
9
.
6.
Dickin
,
F.
and
Wang
,
M. S.
,
1996
, “
Electrical Resistance Tomography for Process Applications
,”
Meas. Sci. Technol.
 0957-0233, Vol.
7
(
3
), pp.
247
260
. https://doi.org/10.1088/0957-0233/7/3/005
7.
Huaxiang
,
W.
,
Chao
,
W.
, and
Wuliang
,
Y.
,
2001
, “
Optimum Design of the Structure of the Electrode for a Medical EIT System
,”
Meas. Sci. Technol.
 0957-0233, Vol.
12
(
8
), pp.
1020
1023
. https://doi.org/10.1088/0957-0233/12/8/305
8.
Klein
,
K.
and
Santamarina
,
J. C.
,
2003
, “
Electrical Conductivity in Soils: Underlying Phenomena
,”
J. Environ. Eng. Geophys.
 1083-1363, Vol.
8
(
4
), pp.
263
273
. https://doi.org/10.4133/JEEG8.4.263
9.
LaBrecque
,
D. J.
,
Sharpe
,
E.
,
Wood
,
T.
, and
Heath
,
G.
,
2004
, “
Small-Scale Electrical Resistivity Tomography of Wet Fractured Rocks
,”
Ground Water
 0017-467X, Vol.
42
(
1
), pp.
111
118
. https://doi.org/10.1111/j.1745-6584.2004.tb02456.x
10.
Lyon
,
G. M.
and
Oakley
,
J. P.
,
1992
, “
Simulation Study of Sensitivity in Stirred Vessel Electrical Impedance Tomography
,”
Proceedings of a Workshop on Tomographic Techniques for Process Design and Operation
, Manchester, UK, March 26–29,
Computational Mechanics Publ.
,
Southampton, UK
, p. 137.
11.
Newell
,
J. C.
,
Peng
,
Y.
,
Edic
,
P. M.
,
Blue
,
R. S.
,
Jain
,
H.
, and
Newell
,
R. T.
,
1998
, “
Effect of Electrode Size on Impedance Images of Two- and Three-Dimensional Objects
,”
IEEE Trans. Biomed. Eng.
 0018-9294, Vol.
45
(
4
), pp.
531
534
. https://doi.org/10.1109/10.664209
12.
Pinheiro
,
P. A. T.
,
Loh
,
W. W.
, and
Dickin
,
F. J.
,
1998
, “
Optimal Sized Electrodes for Electrical Resistance Tomography
,”
Electron. Lett.
 0013-5194, Vol.
34
(
1
), pp.
69
70
. https://doi.org/10.1049/el:19980092
13.
Potts
,
B. D.
and
Santamarina
,
J. C.
,
1993
, “
Geotechnical Tomography. The Effects of Diffraction
,”
Geotech. Test. J.
 0149-6115, Vol.
16
(
4
), pp.
510
517
. https://doi.org/10.1520/GTJ10290J
14.
Santamarina
,
J. C.
and
Fratta
,
D. O.
,
2003
, “
Dynamic Energy Coupling—Electro-Seismic and Seismo-Electric Effects
,”
Transp. Porous Media
 0169-3913, Vol.
50
(
1–2
), pp.
153
178
. https://doi.org/10.1023/A:1020648204185
15.
Santamarina
,
J. C.
,
Klein
,
K. A.
, and
Fam
,
M. A.
,
2001
,
Soils and Waves
,
J. Wiley & Sons
,
New York
, p. 488.
16.
Seagar
,
A. D.
,
Barber
,
D. C.
, and
Brown
,
B. H.
,
1987
, “
Theoretical Limits to Sensitivity and Resolution in Impedance Imaging
,”
Clin. Phys. Physiol. Meas.
 0143-0815, Vol.
8
,
13
31
. https://doi.org/10.1088/0143-0815/8/4A/003
17.
Zhou
,
Y. Q.
,
Shimada
,
J.
, and
Sato
,
A.
,
2001
, “
Three Dimensional Spatial and Temporal Monitoring of Soil Water Content Using Electrical Resistivity Tomography
,”
Water Resour. Res.
 0043-1397, Vol.
37
, pp.
273
285
. https://doi.org/10.1029/2000WR900284
This content is only available via PDF.
You do not currently have access to this content.