Abstract

The large displacement shear box (LDSB) allows testing of interfaces as large as 711 by 406 mm (28 by 16 in.) with maximum interface displacements of 305 mm (12 in.). This device has been used to investigate the response of a variety of interfaces, including clay-geomembrane interfaces for which large displacements are important. The most recent application of the LDSB was to study the response of several sand-to-concrete interfaces under complex loading paths. In this application, the relevant characteristics of the LDSB are its geometry, which reduces the significance of end effects, its ability to apply monotonic and cyclic loading, and its ability to apply simultaneous changes in shear and normal stresses so that complex loading paths can be followed. This paper describes the main features of the LDSB, as well as the testing procedures and results of the sand-to-concrete interface tests that were performed. A procedure for normalizing the interface shear test data is also presented. This procedure facilitates comparative evaluations of interface response to different types of loading. The test results formed the basis for development of an extended hyperbolic model for interfaces that has been implemented in finite element analyses of soil-structure interaction problems.

References

1.
Acar
,
Y. B.
,
Durgunoglu
,
H. T.
, and
Tumay
,
M. T.
,
1982
, “
Interface Properties of Sand
,”
J. Geotech. Engrg. Div.
 0093-6405, American Society of Civil Engineers, Vol.
108
, No.
4
,
648
654
.
2.
Bosscher
,
P. J.
and
Ortiz
,
C.
,
1987
, “
Frictional Properties Between Sand and Various Construction Materials
,”
J. Geotech. Engrg.
 0733-9410, American Society of Civil Engineers, Vol.
113
, No.
9
, pp.
1035
1039
.
3.
Clough
,
G. W.
and
Duncan
,
J. M.
,
1969
, “
Finite Element Analyses of Port Allen and Old River Locks
,” Report No. TE-69-3,
U.S. Army Engineer Waterways Experiment Station
, Vicksburg, MS.
4.
Clough
,
G. W.
and
Duncan
,
J. M.
,
1971
, “
Finite Element Analyses of Retaining Wall Behavior
,”
J. Soil Mech. and Found. Div.
 0044-7994, American Society of Civil Engineers, Vol.
97
, No.
12
, pp.
1657
1673
.
5.
Desai
,
C. S.
and
Rigby
,
D. B.
,
1997
, “
Cyclic Interface and Joint Shear Device Including Pore Pressure Effects
,”
J. Geotech. Geoenviron. Eng.
 1090-0241 https://doi.org/10.1061/(ASCE)1090-0241(1997)123:6(568), Vol.
123
, No.
6
, pp.
568
579
.
6.
Desai
,
C. S.
,
Drumm
,
E. C.
, and
Zaman
,
M. M.
,
1985
, “
Cyclic Testing and Modeling of Interfaces
,”
J. Geotech. Engrg.
 0733-9410, American Society of Civil Engineers, Vol.
111
, No.
6
, pp.
793
815
.
7.
Dove
,
J. E.
,
Bents
,
D. D.
,
Wang
,
J.
, and
Gao
,
B.
, 2006, “
Particle-Scale Surface Interactions of Non-Dilative Interface Systems
,”
Geotextiles and Geomembranes
, Vol.
24
, No. 4,
Elsevier
,
Amsterdam
, pp.
156
168
.
8.
Duncan
,
J. M.
,
Byrne
,
P.
,
Wong
,
K. S.
, and
Mabry
,
P.
,
1980
, “
Strength, Stress-Strain and Bulk Modulus Parameters for Finite Element Analyses of Stresses and Movements in Soil Masses
,” Report No. UCB/GT/80-01, Department of Civil Engineering,
University of California
, Berkeley.
9.
Ebeling
,
R. M.
and
Mosher
,
R. L.
,
1996
, “
Red River U-Frame Lock No. 1 Backfill-Structure-Foundation Interaction
,”
J. Geotech. Engrg.
 0733-9410 https://doi.org/10.1061/(ASCE)0733-9410(1996)122:3(216), Vol.
122
, No.
3
, pp.
216
225
.
10.
Ebeling
,
R. M.
and
Wahl
,
R. E.
,
1997
, “
Soil-Structure-Foundation Interaction Analysis of New Roller-Compacted Concrete North Lock Wall at McAlpine Locks
,” Technical Report ITL-97-5,
U.S. Army Engineer Waterways Experiment Station
, Vicksburg, MS.
11.
Ebeling
,
R. M.
,
Mosher
,
R. L.
,
Abraham
,
K.
, and
Peters
,
J. F.
,
1993
, “
Soil-Structure Interaction Study of Red River Lock and Dam No. 1 Subjected to Sediment Loading
,” Technical Report ITL-93-3,
U.S. Army Engineer Waterways Experiment Station
, Vicksburg, MS.
12.
Ebeling
,
R. M.
,
Pace
,
M. E.
, and
Morrison
,
E. E.
,
1997
, “
Evaluating the Stability of Existing Massive Concrete Gravity Structures Founded on Rock
,” Technical Report REMR-CS-54,
U.S. Army Engineer Waterways Experiment Station
, Vicksburg, MS.
13.
Ebeling
,
R. M.
,
Peters
,
J. F.
, and
Mosher
,
R. L.
,
1997
, “
The Role of Non-Linear Deformation Analyses in the Design of a Reinforced Soil Berm at Red River U-Frame Lock No. 1
,”
Int. J. Numer. Analyt. Meth. Geomech.
 0363-9061 https://doi.org/10.1002/(SICI)1096-9853(199711)21:11<753::AID-NAG899>3.0.CO;2-3, Vol.
21
, pp.
753
787
.
14.
Esterhuizen
,
J. J. B.
,
Filz
,
G. M.
, and
Duncan
,
J. M.
,
2001
, “
Constitutive Behavior of Geosynthetic Interfaces
,”
J. Geotech. Geoenviron. Eng.
 1090-0241 https://doi.org/10.1061/(ASCE)1090-0241(2001)127:10(834), Vol.
127
, No.
10
, pp.
834
840
.
15.
Evgin
,
E.
and
Fakharian
,
K.
,
1996
, “
Effect of Stress Paths on the Behaviour of Sand-Steel Interfaces
,”
Can. Geotech. J.
 0008-3674, Vol.
33
, No.
6
, pp.
853
865
.
16.
Fakharian
,
K.
and
Evgin
,
E.
,
1995
, “
Simple Shear Versus Direct Shear Tests on Interfaces During Cyclic Loading
,”
Proceedings, 3rd International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics
, St. Louis, MO, 2–7 April, 1995,
Prakash
S.
, Ed.,
University of Missouri
at
Rolla
, Vol.
III
, pp.
13
16
.
17.
Fakharian
,
K.
and
Evgin
,
E.
,
1997
, “
Cyclic Simple-Shear Behavior of Sand-Steel Interfaces Under Constant Normal Stiffness Condition
,”
J. Geotech. Geoenviron. Eng.
 1090-0241 https://doi.org/10.1061/(ASCE)1090-0241(1997)123:12(1096), Vol.
123
, No.
12
, pp.
1096
1105
.
18.
Frost
,
J. D.
,
DeJong
,
J. T.
, and
Recalde
,
M.
,
2002
, “
Shear Failure Behavior of Granular-Continuum Interfaces
,”
Eng. Fract. Mech.
 0013-7944 https://doi.org/10.1016/S0013-7944(02)00075-9, Vol.
69
, No.
17
, pp.
2029
2048
.
19.
Gómez
,
J. E.
,
2000
, “
Development of an Extended Hyperbolic Model for Concrete-to-Soil Interfaces
,” Doctoral Dissertation, Geotechnical Engineering Division, Department of Civil Engineering,
Virginia Polytechnic Institute and State University
, Blacksburg, VA.
20.
Gómez
,
J. E.
,
Filz
,
G. M.
, and
Ebeling
,
R. M.
,
2000
, “
Development of an Improved Numerical Model for Concrete-to-Soil Interfaces in Soil-Structure Interaction Analyses
,” Technical Report ITL-99-1,
U.S. Army Engineer Research and Development Center
, Vicksburg, MS.
21.
Gómez
,
J. E.
,
Filz
,
G. M.
, and
Ebeling
,
R. M.
,
2000
, “
Extended Load/Unload/Reload Hyperbolic Model for Interfaces: Parameter Values and Model Performance for the Contact Between Concrete and Coarse Sand
,” ERDC/ITL TR-00-7,
U.S. Army Engineer Research and Development Center
, Vicksburg, MS.
22.
Gómez
,
J. E.
,
Filz
,
G. M.
, and
Ebeling
,
R. M.
,
2003
, “
Extended Hyperbolic Model for Soil-to-Concrete Interfaces
,”
J. Geotech. Geoenviron. Eng.
 1090-0241 https://doi.org/10.1061/(ASCE)1090-0241(2003)129:11(993), Vol.
129
, No.
11
, pp.
993
1000
.
23.
Hryciw
,
R. D.
and
Irsyam
,
M.
,
1993
, “
Behavior of Sand Particles Around Rigid Ribbed Inclusions During Shear
,”
Soils Found.
 0038-0806, Vol.
33
, No.
3
, pp.
1
13
.
24.
Huck
,
P. J.
and
Saxena
,
S.K.
,
1981
, “
Response of Soil-Concrete Interface at High Pressure
,”
Proceedings of the 10th International Conference on Soil Mechanics and Foundation Engineering
, Stockholm, 15–19 June 1981.
A. A. Balkema
,
Rotterdam, The Netherlands
, Vol.
2
, pp.
141
144
.
25.
ISO
4287:1997/Cor 1:1998. “
Geometrical Product Specifications (GPS)—Surface Texture: Profile Method—Terms, Definitions and Surface Texture Parameters
,” International Standards Organization,
Geneva, Switzerland
.
26.
Jewell
,
R. A.
,
1989
, “
Direct Shear Tests on Sand
,”
Geotechnique
 0016-8505, Vol.
39
, No.
2
, pp.
309
322
.
27.
Kishida
,
H.
and
Uesugi
,
M.
,
1987
, “
Tests of the Interface Between Sand and Steel in the Simple Shear Apparatus
,”
Geotechnique
 0016-8505, Vol.
37
, No.
1
, pp.
45
52
.
28.
Kulhawy
,
F. H.
and
Peterson
,
M. S.
,
1979
, “
Behavior of Sand-Concrete Interfaces
,”
Proceedings of the 6th Panamerican Conference on Soil Mechanics and Foundation Engineering
,
Lima
,
Perú
, 2–7 December 1979, Vol.
II
, pp.
225
236
.
29.
Lee
,
P. A.
,
Kane
,
W. F.
,
Drumm
,
E. C.
, and
Bennett
,
R. M.
,
1989
, “
Investigation and Modeling of Soil-Structure Interface Properties
,”
Foundation Engineering: Current Principles and Practice
,
American Society Civil Engineers Geotechnical Special Publication
,
Vol.
22
, pp.
580
587
.
30.
Lemos
,
L. J. L.
and
Vaughan
,
P. R.
,
2000
, “
Clay-Interface Shear Resistance
,”
Geotechnique
 0016-8505, Vol.
50
, No.
1
, pp.
55
64
.
31.
Mitchell
,
J. K.
and
Soga
,
K.
,
2005
,
Fundamentals of Soil Behavior
,
John Wiley and Sons
,
Hoboken, NJ
.
32.
Paikowski
,
S. G.
,
Player
,
C. M.
, and
Connors
,
P. J.
,
1995
, “
A Dual Interface Apparatus for Testing Unrestricted Friction of Soil Along Solid-Surfaces
,”
Geotech. Test. J.
 0149-6115, Vol.
18
, No.
2
, pp.
168
193
.
33.
Paikowski
,
S. G.
,
Player
,
C. M.
, and
Connors
,
P. J.
,
1996
, “
Closure to discussion on “A Dual Interface Apparatus for Testing Unrestricted Friction of Soil Along Solid-Surfaces
,”
Geotech. Test. J.
 0149-6115, Vol.
19
, No.
4
, pp.
447
451
.
34.
Peterson
,
M. S.
,
Kulhawy
,
F. H.
,
Nucci
,
L. R.
, and
Wasil
,
B. A.
,
1976
, “
Stress-Deformation Behavior of Soil-Concrete Interfaces
,” Contract Report B-49 to
Niagara Mohawk Power Corporation
, Syracuse, NY.
35.
Potyondy
,
J. G.
,
1961
, “
Skin Friction Between Various Soils and Construction Materials
,”
Geotechnique
 0016-8505, Vol.
11
, No.
4
, pp.
339
353
.
36.
Rao
,
K. S. S.
,
Allam
,
M. M.
, and
Robinson
,
R. G.
,
1998
,
Proceedings, Institution of Civil Engineers and Geotechnical Engineering
, Vol.
131
, pp.
75
82
.
37.
Scarpelli
,
G.
and
Wood
,
D. M.
,
1982
,
Experimental Observations of Shear Band Patterns in Direct Shear Tests
, in
Deformation and Failure of Granular Materials
,
International Union of Theoretical and Applied Mechanicsɜ
,
Rotterdam, Netherlands
, pp.
473
484
.
38.
Shallenberger
,
W. C.
and
Filz
,
G. M.
,
1996
, “
Interface Strength Determination Using a Large Displacement Shear Box
,”
Proceedings of the 2nd International Congress on Environmental Geotechnics
, Osaka, Japan, 5–8 November 1996.
Kamon
M.
, Ed.,
A. A. Balkema
,
Rotterdam, The Netherlands
, pp.
147
152
.
39.
Shibuya
,
S.
,
Mitachi
,
T.
, and
Tamate
,
S.
,
1997
, “
Interpretation of Direct Shear Box Testing of Sands as Quasi-Simple Shear
,”
Geotechnique
 0016-8505, Vol.
47
, No.
4
, pp.
769
790
.
40.
Stark
,
T. D.
,
Williamson
,
T. A.
, and
Eid
,
H. T.
,
1996
, “
HDPE Geomembrane/Geotextile Interface Shear Strength
,”
J. Geotech. Engrg.
 0733-9410 https://doi.org/10.1061/(ASCE)0733-9410(1996)122:3(197), Vol.
122
, No.
3
, pp.
197
203
.
41.
Uesugi
,
M.
and
Kishida
,
H.
,
1986
, “
Frictional Resistance at Yield Between Dry Sand and Mild Steel
,”
Soils Found.
 0038-0806, Vol.
26
, No.
4
, pp.
139
149
.
42.
Uesugi
,
M.
and
Kishida
,
H.
,
1986
, “
Influential Factors of Friction Between Steel and Dry Sands
,”
Soils Found.
 0038-0806, Vol.
26
, No.
2
, pp.
33
46
.
43.
Uesugi
,
M.
,
Kishida
,
H.
, and
Tsubakihara
,
Y.
,
1988
, “
Behavior of Sand Particles in Sand-Steel Friction
,”
Soils Found.
 0038-0806, Vol.
28
, No.
1
, pp.
107
118
.
44.
Uesugi
,
M.
,
Kishida
,
H.
, and
Tsubakihara
,
Y.
,
1989
, “
Friction Between Sand and Steel Under Repeated Loading
,”
Soils Found.
 0038-0806, Vol.
29
, No.
3
, pp.
127
137
.
45.
Uesugi
,
M.
,
Kishida
,
H.
, and
Uchikawa
,
Y.
,
1990
, “
Friction Between Dry Sand and Concrete Under Monotonic and Repeated Loading
,”
Soils Found.
 0038-0806, Vol.
30
, No.
1
, pp.
115
128
.
46.
Yoshimi
,
Y.
and
Kishida
,
T.
,
1981
, “
A Ring Torsion Apparatus for Evaluating Friction Between Soil and Metal Surfaces
,”
Geotech. Test. J.
 0149-6115, Vol.
4
, No.
4
, pp.
145
152
.
This content is only available via PDF.
You do not currently have access to this content.