Abstract

The ultimate tip resistance of the cone was determined by employing a miniature cone penetrometer of diameter 19.5 mm in conventional triaxial equipment. A number of penetration tests were carried out for clean and silty sands. The variation of the tip resistance was determined with respect to changes in effective vertical stress (σv). It was seen that with this laboratory experimental setup, it is possible to make a reasonable prediction of the ultimate cone tip resistance (qcu). As expected, the tip resistance increases with an increase in (σv). For the same range of the relative density, an increase in proportion of silt was found to generally cause a reduction in the tip resistance. By considering the effect of the overburden stress on internal friction angle of soil mass, it was noted that the magnitude of qcuv increases almost linearly with friction angle. The obtained values of qcu compare reasonably well with two different widely used correlations in literature. It is expected that the study will be useful for deriving correlations between shear strength parameters and the cone tip resistance for cohesionless deposits at different values of the effective overburden pressure especially for loose to medium dense states.

References

1.
ASTM, Standard D 4253–00, 2001, “
Standard Test Methods for Maximum Index Density and Unit Weight of Soils Using a Vibratory Table
,” Vol.
4(8)
,
ASTM International
,
West Conshohocken, PA
.
2.
ASTM, Standard D 4254–00, 2001, “
Standard Test Methods for Minimum Index Density and Unit Weight of Soils and Calculation of Relative Density
,” Vol.
4(8)
,
ASTM International
,
West Conshohocken, PA
.
3.
Been
,
K.
,
Crooks
,
J. H. A.
,
Becker
,
D. E.
, and
Jefferies
,
M. G.
,
1986
, “
The Cone Penetration Tests in Sands: Part I, State Parameter Interpretation
,”
Geotechnique
 0016-8505, Vol.
36
, No.
2
, pp.
239
249
.
4.
Been
,
K.
,
Jefferies
,
M. G.
,
Crooks
,
J. H. A.
, and
Leach
,
B.
,
1987
, “
The Cone Penetration Test Calibration for Erksak Sand
,”
Can. Geotech. J.
 0008-3674, Vol.
24
, No.
4
, pp.
601
610
.
5.
Casagrande
,
A.
and
Wilson
,
S. D.
,
1951
, “
The Effect of Rate of Loading on the Strength of Clays and Shales at Constant Water Content
,”
Geotechnique
 0016-8505, Vol.
2
, pp.
251
263
.
6.
Dayal
,
U.
and
Allen
,
J. H.
,
1975
, “
The Effect of Penetration Rate on the Strength of Remoulded Clay and Sand Samples
,”
Can. Geotech. J.
 0008-3674, Vol.
12
, pp.
336
347
.
7.
De Lima
,
D. C.
and
Tumay
,
M. T.
,
1991
, “
Scale Effects in Cone Penetration Tests
,”
Proceedings of the Geotechnical Engineering Congress 1991
,
ASCE
,
Boulder, Co
, Vol.
1
, pp.
38
51
.
8.
Durgunoglu
,
H. T.
and
Mitchell
,
J. K.
,
1975
, “
Static Penetration Resistance of Soils: I. Analysis
,”
Proceedings of the Conference on In situ Measurement of Soil Properties
,
ASCE
,
New York
, Vol.
1
, pp.
151
171
.
9.
Foray
,
P.
,
1992
, “
Scale and Boundary Effects on Calibration Chamber Pile Tests
,”
Proceedings of the International Symposium on Calibration Chamber Testing
,
Potsdam
,
New York
, pp.
147
160
.
10.
Ghionna
,
V. N.
and
Jamiolkowski
,
M.
,
1992
, “
A Critical Appraisal of Calibration Chamber Testing of Sands
,”
Proceedings of the International Symposium on Calibration Chamber Testing
,
Potsdam
,
New York
, Balkema Publication,
Rotterdam
, pp.
13
40
.
11.
Houlsby
,
G. T.
and
Hitchman
,
R.
,
1988
, “
Calibration Chamber Tests of a Cone Penetrometer in Sand
,”
Geotechnique
 0016-8505, Vol.
38
, No.
1
, pp.
39
44
.
12.
Hsu
,
H. H.
and
Huang
,
A. B.
,
1998
, “
Development of an Axisymmetric Field Simulator for Cone Penetration Tests in Sand
,”
Geotech. Test. J.
 0149-6115, Vol.
21
, No.
4
, pp.
348
355
.
13.
Huang
,
A. B.
and
Hsu
,
H. H.
,
2005
, “
Cone Penetration Tests Under Simulated Field Conditions
,”
Geotechnique
 0016-8505, Vol.
55
, No.
5
, pp.
345
354
.
14.
Kulhawy
,
F. H.
and
Mayne
,
P. W.
,
1990
, “
Manual of Estimating Soil Properties for Foundation Design
,”
EPRI Electric Power Research Institute
, Ithaca, NY.
15.
Kumar
,
J.
,
Raju
,
K. V. S. B.
, and
Kumar
,
A.
,
2007
, “
Relationships Between Rate of Dilation, Peak and Critical State Friction Angles
,” Indian Geotechnical Journal, Vol.
37
, No.
1
, pp.
53
63
.
16.
Lunne
,
T.
,
Robertson
,
P. K.
, and
Powel
,
J. J. M.
,
1997
, “
Cone Penetration Testing in Geotechnical Practice
,” E and F Spon, London.
17.
Mayne
,
P. W.
and
Kulhawy
,
F. H.
,
1992
, “
Calibration Chamber Database and Boundary Effects for CPT Data
,”
Proceedings of the International Symposium on Calibration Testing
,
Potsdam, NY
, Elsevier, 1991 pp.
257
264
.
18.
Meigh
,
A. C.
,
1987
,
Cone Penetration Testing, Methods and Interpretation
, Buttersworths, London.
19.
Na
,
Y. M.
,
Choa
,
V.
,
Teh
,
C. I.
, and
Chang
,
M. C.
,
2005
, “
Geotechnical Parameters of Reclaimed Sand Fill from the Cone Penetration Test
,”
Can. Geotech. J.
 0008-3674, Vol.
42
, pp.
91
109
.
20.
Parkin
,
A. K.
and
Lunne
,
T.
,
1982
, “
Boundary Effects in the Laboratory Calibration of a Cone Penetrometer in Sand
,”
Proceedings of the 2nd European Symposium on Penetration Testing
,
ESOPT-II, Amsterdam, Balkema Publication
,
Rotterdam
, Vol.
2
, pp.
761
768
.
21.
Robertson
,
P. K.
and
Campanella
,
R. G.
,
1983
, “
Interpretation of Cone Penetration Tests, Part I: Sand
,”
Can. Geotech. J.
 0008-3674, Vol.
20
, pp.
718
733
.
22.
Rol
,
A. H.
,
1982
, “
Comparative Study on Cone Resistance with Three Types of CPT Tips
,”
Proceedings of the 2nd European Symposium on Penetration Testing, ESOPT, II
,
Amsterdam, Balkema Publication
,
Rotterdam
, Vol.
2
, pp.
813
18
.
23.
Schnaid
,
F.
and
Houlsby
,
G. T.
,
1991
, “
An Assessment of Chamber Size Effects in the Calibration of In-Situ Tests in Sand
,”
Geotechnique
 0016-8505, Vol.
41
, No.
3
, pp.
437
445
.
24.
Schnaid
,
F.
and
Houlsby
,
G. T.
,
1992
, “
Measurement of the Properties of Sand in a Calibration Chamber by the Cone Pressuremeter Test
,”
Geotechnique
 0016-8505, Vol.
42
, No.
4
, pp.
587
601
.
25.
Susila
,
E.
and
Hryciw
,
R. D.
,
2003
, “
Large Displacement FEM Modelling of the Cone Pentrometer Test (CPT) in Normally Consolidated Sand
,”
Int. J. Numer. Analyt. Meth. Geomech.
 0363-9061 https://doi.org/10.1002/nag.287, Vol.
27
, pp.
585
602
.
26.
Sweeney
,
B. P.
and
Clough
,
G. W.
,
1990
, “
Design of a Large Calibration Chamber
,”
Geotech. Test. J.
 0149-6115, Vol.
13
, No.
1
, pp.
36
44
.
27.
Whitman
,
R. V.
,
1970
, “
The Response of Soils to Dynamic Loadings
,” Final Report, U.S. Army Eng. WES, Vickburg.
This content is only available via PDF.
You do not currently have access to this content.