Abstract

Seepage consolidation under normal gravity conditions can be used to prepare clay soil substrates for subsequent testing in a geotechnical centrifuge. Currently available information provides no information regarding the general efficiency of this method, which would be expected to vary widely depending on centrifuge, test specimen, and operating conditions. A numerical investigation is presented of the efficiency of the two-stage seepage/centrifuge consolidation method for the preparation of normally consolidated clay substrates. Large strain consolidation simulations and experimental data for centrifuge and seepage/centrifuge consolidation tests conducted on reconstituted Singapore marine clay are in excellent agreement. A parametric study illustrates the effects of initial specimen void ratio, initial specimen height, surcharge stress, swelling time, and acceleration factor on the efficiency of the two-stage substrate preparation method. Efficiency of the method for Singapore marine clay ranged from 55 to essentially 100% for the simulations conducted.

References

1.
Bassett
,
R. H.
,
1973
, “
Centrifugal Model Tests of Embankments on Soft Alluvial Foundations
,”
Proceedings, 8th International Conference on Soil Mechanics and Foundation Engineering
,
Moscow
, Vol.
2.2
, pp.
23
-
30
.
2.
Bolton
,
M. D.
and
Powrie
,
W.
,
1987
, “
Collapse of Diaphragm Walls Retaining Clay
,”
Geotechnique
 0016-8505, Vol.
37
, No.
3
, pp.
335
-
353
.
3.
Davies
,
M. C. R.
and
Parry
,
R. H. G.
,
1982
, “
Determining the Shear Strength of Clay Cakes in the Centrifuge Using a Vane
,”
Geotechnique
 0016-8505, Vol.
32
, No.
1
, pp.
59
-
62
.
4.
Davies
,
M. C. R.
and
Parry
,
R. H. G.
,
1985
, “
Centrifuge Modeling of Embankments on Clay Foundations
,”
Soils and Foundations
, Vol.
25
, No.
4
, pp.
19
-
36
.
5.
Fox
,
P. J.
,
1999
, “
Solution Charts for Finite Strain Consolidation of Normally Consolidated Clays
,”
Journal of Geotechnical and Geoenvironmental Engineering
 1090-0241 https://doi.org/10.1061/(ASCE)1090-0241(1999)125:10(847), Vol.
125
, No.
10
, pp.
847
-
867
.
6.
Fox
,
P. J.
and
Berles
,
J. D.
,
1997
, “
CS2: A Piecewise-Linear Model for Large Strain Consolidation
,”
International Journal for Numerical and Analytical Methods in Geomechanics
 0363-9061 https://doi.org/10.1002/(SICI)1096-9853(199707)21:7<453::AID-NAG887>3.3.CO;2-2, Vol.
21
, No.
7
, pp.
453
-
475
.
7.
Fox
,
P. J.
,
Lee
,
J.
, and
Qiu
,
T.
,
2004
, “
Discussion of ‘A Comparative Study of Suction-Induced Seepage Consolidation Versus Centrifuge Consolidation,’ by R. G. Robinson, T. S. Tan, and F. H. Lee
,”
Geotechnical Testing Journal
 0149-6115, Vol.
27
, No.
4
, pp.
416
-
417
.
8.
Fox
,
P. J.
,
Lee
,
J.
, and
Qiu
,
T.
,
2005
, “
Model for Large Strain Consolidation by Centrifuge
,”
International Journal of Geomechanics
 1532-3641, in press.
9.
Ilyas
,
T.
,
Leung
,
C. F.
,
Chow
,
Y. K.
, and
Budi
,
S. S.
,
2004
, “
Centrifuge Model Study of Laterally Loaded Pile Groups in Clay
,”
Journal of Geotechnical and Geoenvironmental Engineering
 1090-0241 https://doi.org/10.1061/(ASCE)1090-0241(2004)130:3(274), Vol.
130
, No.
3
, pp.
274
-
283
.
10.
Kimura
,
T.
and
Mair
,
R. J.
,
1981
, “
Centrifugal Testing of Model Tunnels in Soft Clay
,”
Proceedings, 10th International Conference on Soil Mechanics and Foundation Engineering
,
Stockholm, Balkema, Rotterdam
, Vol.
1
, pp.
319
-
322
.
11.
Kimura
,
T.
,
Kusakabe
,
O.
,
Takemura
,
J.
, and
Saitoh
,
K.
,
1984
, “
Preparation of a Normally Consolidated Clay Stratum in a Centrifuge
,”
Soils and Foundations
, Vol.
24
, No.
4
, pp.
71
-
83
.
12.
Nakase
,
A.
,
Kusakabe
,
O.
, and
Wong
,
S. F.
,
1984
, “
Centrifuge Model Tests on Bearing Capacity of Clay
,”
Journal of Geotechnical Engineering
 0733-9410, Vol.
110
, No.
12
, pp.
1749
-
1765
.
13.
Phillips
,
R.
,
1995
, “
Centrifuge Modeling: Practical Considerations
,” Chapter 3,
Geotechnical Centrifuge Technology
,
Taylor
R. N.
, Ed.,
Blackie Academic and Professional
,
London
, pp.
34
-
60
.
14.
Robinson
,
R. G.
,
Tan
,
T. S.
, and
Lee
,
F. H.
,
2003
, “
A Comparative Study of Suction-Induced Seepage Consolidation Versus Centrifuge Consolidation
,”
Geotechnical Testing Journal
 0149-6115, Vol.
26
, No.
1
, pp.
92
-
101
.
15.
Robinson
,
R. G.
,
Tan
,
T. S.
, and
Lee
,
F. H.
,
2004
, “
Closure to ‘A Comparative Study of Suction-Induced Seepage Consolidation Versus Centrifuge Consolidation,’
Geotechnical Testing Journal
 0149-6115, Vol.
27
, No.
4
, p. 418.
16.
Schofield
,
A. N.
,
1980
, “
Cambridge Geotechnical Centrifuge Operations
,”
Geotechnique
 0016-8505, Vol.
30
, No.
3
, pp.
227
-
268
.
17.
Schofield
,
A. N.
,
1995
, “
Foreward
,” Chapter 3,
Geotechnical Centrifuge Technology
,
Taylor
R. N.
, Ed.,
Blackie Academic and Professional
,
London
, pp.
vii
-
xi
.
18.
Sharma
,
J. S.
and
Bolton
,
M. D.
,
2001
, “
Centrifugal and Numerical Modeling of Reinforced Embankments on Soft Clay Installed with Wick Drains
,”
Geotextiles and Geomembranes
, Vol.
19
, No.
1
, pp.
23
-
44
.
19.
Tani
,
K.
and
Craig
,
W. H.
,
1995
, “
Development of Centrifuge Cone Penetration Test to Evaluate the Undrained Shear Strength Profile of a Model Clay Bed
,”
Soils and Foundations
, Vol.
35
, No.
2
, pp.
37
-
47
.
20.
Zelikson
,
A.
,
1969
, “
Geotechnical Models Using the Hydraulic Gradient Similarity Method
,”
Geotechnique
 0016-8505, Vol.
19
, No.
4
, pp.
495
-
508
.
This content is only available via PDF.
You do not currently have access to this content.