Abstract

Determining the shear strength envelope of an unsaturated soil involves a sophisticated and time-consuming testing program. Hence, it is advantageous to minimize the number of tests required to establish the envelope. In this paper, a power additive function is adopted to predict the shear strength envelope of unsaturated soils from knowledge of the unsaturated shear strength at residual suction, the effective stress friction angle for saturated conditions, and the soil-water characteristic curve. Two boundary conditions are required to quantify the two fitting parameters of the function. The first is φb = 0 at residual suction, and the second is the contribution of matric suction to the shear strength at residual suction, which should be experimentally evaluated. The validity of the method is tested for a number of unsaturated shear strength data covering a wide range of suctions. Good agreement was found to exist between the predicted envelopes and the experimental data. The method requires only one experimental evaluation of the unsaturated shear strength and is most suitable for coarse- to medium-grained soils where the residual suction may be achieved reliably in the laboratory.

References

1.
Brooks
,
R. H.
and
Corey
,
A. T.
,
1966
, “
Properties of Porous Media
,”
Journal of Irrigation and Drainage Division
, American Society of Civil Engineers, Vol.
92
, No.
IR2
, pp.
62
-
88
.
2.
Escario
,
V.
and
Juca
,
J.
,
1989
, “
Strength and Deformations of Partly Saturated Soils
,”
Proceedings, 12th International Conference, Soil Mechanics and Foundation Engineering
,
Rio de Janeiro
, pp.
43
-
46
.
3.
Escario
,
V.
and
Saez
,
J.
,
1986
, “
The Strength of Partly Saturated Soils
,”
Geotechnique
 0016-8505, Vol.
36
, No.
3
, pp.
453
-
456
.
4.
Everett
,
E. G.
,
1993
,
Vadose zone monitoring
. In
Geotechnical Practice for Waste Management
,
Daniel
D. E.
, Ed.,
Chapman and Hall
,
London
, pp.
651
-
675
.
5.
Fredlund
,
D. G.
,
Morgenstern
,
N. R.
, and
Widger
,
R. A.
,
1978
, “
The Shear Strength of Unsaturated Soils
,”
Canadian Geotechnical Journal
 0008-3674, Vol.
15
, pp.
313
-
321
.
6.
Fredlund
,
D. G.
and
Xing
,
A.
,
1994
, “
Equations for the Soil-Water Characteristic Curve
,”
Canadian Geotechnical Journal
 0008-3674, Vol.
31
, pp.
521
-
532
.
7.
Fredlund
,
D. G.
,
Xing
,
A.
,
Fredlund
,
M. D.
, and
Barbour
,
S. L.
,
1996
, “
The Relationship of the Unsaturated Soil Shear Strength to the Soil-Water Characteristic Curve
,”
Canadian Geotechnical Journal
 0008-3674, Vol.
32
, pp.
440
-
448
.
8.
Gan
,
J. K. M.
and
Fredlund
,
D. G.
,
1996
, “
Shear Strength Characteristics of Two Saprolitic Soils
,”
Canadian Geotechnical Journal
 0008-3674, Vol.
33
, pp.
595
-
609
.
9.
Gan
,
J. K. M.
,
Rahardjo
,
H.
, and
Fredlund
,
D. G.
,
1988
, “
Determination of the Shear Strength Parameters of an Unsaturated Soil Using the Direct Shear Test
,”
Canadian Geotechnical Journal
 0008-3674, Vol.
25
, pp.
500
-
510
.
10.
Ho
,
D. Y. F.
and
Fredlund
,
D. G.
,
1982
, “
Increase in Strength Due to Suction for Two Hong Kong Soils
,”
Proceedings, American Society of Civil Engineers Geotechnical Engineering Division Specialty Conference
,
Honolulu, Hawaii
, pp.
263
-
295
.
11.
Leong
,
E. C.
and
Rahardjo
,
H.
,
1997
, “
Review of the Soil-Water Characteristic Curve Equations
,”
Journal of Geotechnical and Geoenvironmental Engineering
 1090-0241 https://doi.org/10.1061/(ASCE)1090-0241(1997)123:12(1106), American Society of Civil Engineers, Vol.
123
, No.
12
, pp.
1106
-
1117
.
12.
Oloo
,
S. Y.
and
Fredlund
,
D. G.
,
1996
, “
A Method for Determination of φb for Statically Compacted Soils
,”
Canadian Geotechnical Journal
 0008-3674, Vol.
33
, pp.
272
-
280
.
13.
Rahardjo
,
H.
,
Lim
,
T. T.
,
Chang
,
M. F.
, and
Fredlund
,
D. G.
,
1995
, “
Shear Strength Characteristics of a Residual Soil
,”
Canadian Geotechnical Journal
 0008-3674, Vol.
32
, pp.
60
-
77
.
14.
Rassam
,
D. W.
and
Williams
,
D. J.
,
1997
, “
Shear Strength of Unsaturated Gold Tailings
,”
Proceedings, 1st Australia New Zealand Conference on Environmental Geotechnics
,
Balkema
,
Rotterdam
, pp.
469
-
474
.
15.
Rassam
,
D. W.
and
Williams
,
D. J.
,
1999
a, “
Bearing Capacity of Desiccated Tailings
,”
Journal of Geotechnical and Geoenvironmental Engineering
 1090-0241 https://doi.org/10.1061/(ASCE)1090-0241(1999)125:7(600), American Society of Civil Engineers, Vol.
125
, No.
7
, pp.
600
-
609
.
16.
Rassam
,
D. W.
and
Williams
,
D. J.
,
1999
b, “
A Relationship Describing the Shear Strength of Unsaturated Soils
,”
Canadian Geotechnical Journal
 0008-3674 https://doi.org/10.1139/cgj-36-2-363, Vol.
36
, pp.
363
-
368
.
17.
Rassam
,
D. W.
and
Williams
,
D. J.
,
2000
, “
A Dynamic Method for Determining the Soil Water Characteristic Curve for Coarse-Grained Soils
,”
Geotechnical Testing Journal
 0149-6115, Vol.
23
, No.
1
, pp.
67
-
71
.
18.
Tinjum
,
J. M.
,
Benson
,
C. H.
, and
Blotz
,
L. R.
,
1997
, “
Soil-Water Characteristic Curves for Compacted Clays
,”
Journal of Geotechnical and Geoenvironmental Engineering
 1090-0241 https://doi.org/10.1061/(ASCE)1090-0241(1997)123:11(1060), American Society of Civil Engineers, Vol.
123
, No.
11
, pp.
1060
-
1069
.
19.
Vanapalli
,
S. K.
,
1994
, “
Simple Tests Procedures and Their Interpretation in Evaluating the Shear Strength of Unsaturated Soils
,” Ph.D. Thesis,
University of Saskatchewan
, Saskatoon, Canada.
20.
Vanapalli
,
S. K.
,
Fredlund
,
D. G.
,
Pufahl
,
D. E.
, and
Clifton
,
A. W.
,
1996
, “
Model for the Prediction of Shear Strength with Respect to Soil Suction
,”
Canadian Geotechnical Journal
 0008-3674, Vol.
33
, pp.
379
-
392
.
21.
Van Genuchten
,
M. Th.
,
1980
, “
A Closed-Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils
,”
Soil Science Society of America Journal
 0361-5995, Vol.
44
, pp.
892
-
898
.
This content is only available via PDF.
You do not currently have access to this content.