Abstract

The consolidation and permeability (hydraulic conductivity) characteristics of the high-porosity surficial seabed sediments from a test site in the Eckernförde Bay, Baltic Sea, were studied using a constant rate of strain (CRS) consolidation and hydraulic conductivity testing system employing flow pumps. These silty clay sediments are characterized by high void ratios, high organic content, and variable concentration of methane gas. Results from CRS consolidation tests show appreciable apparent overconsolidation of the sediments at the upper 200 cm with a gradual transition to normally consolidated states below 250 cm in depth. The highly compressible nature of the material is reflected in the large values of the compression index. The hydraulic conductivity of the box core samples ranges from 2.5 × 10−7 to 3.0 × 10−6 cm/s for void ratios ranging from 4.5 to 7.0 with a linear relationship between void ratio and log of hydraulic conductivity. The engineering behavior of these sediments is of practical significance in geoacoustic modeling of the seafloor for studies related to mine countermeasure programs.

References

1.
Ag
,
A.
, (
1994
), “
Consolidation and Permeability Behavior of High Porosity Baltic Seabed Sediments
,” M. S. thesis,
Department of Ocean Engineering, University of Rhode Island
, Kingston, RI.
Annual Book of ASTM Standards
,
1997
, Vol.
04.08
, Soil and Rock (I), D 420-D 4914.
2.
Brandes
,
H. G.
,
Silva
,
A. J.
,
Ag
,
A. G.
, and
Veyera
,
G. E.
,
1996
, “
Consolidation and Permeability Characteristics of High Porosity Surficial Sediments in Eckernförde Bay
,”
Geo-Marine Letters
 0276-0460, Vol.
15
,
1995
.
3.
Brüggmann
,
L.
,
Lange
,
D.
, and
Leipe
,
T.
,
1992
, “
Western Baltic Sea, in Review of Contaminants in the Baltic Sediments
,” ICES Cooperative Research Report No. 180,
International Council for Exploration of the Sea
, pp.
19
-
25
.
4.
Emelyanov
,
E. M.
,
1992
, “
The Baltic Proper, in Review of Contaminants in the Baltic Sediments
,” ICES cooperative Research Report No. 180,
International Council for Exploration of the Sea
, pp.
16
-
21
.
5.
Folk
,
R. L.
,
1974
,
Petrology of Sedimentary Rock
,
Hamphill Publishing Co.
,
Austin, TX
.
6.
Gavrisheff
,
A. M.
,
1992
, “
Hydraulic Conductivity and Consolidation Testing Using Constant Flow Pump Methods
,” Master's thesis,
University of Rhode Island
, RI.
7.
Hamilton
,
E. L.
,
1980
, “
Geoacoustic Modeling of the Sea Floor
,”
Journal of Acoustic Society of America
, Vol.
68
, pp.
1313
-
1340
.
8.
Keller
,
G. H.
,
1982
, “
Organic Matter and the Geotechnical Properties of Submarine Sediments
,”
Geomarine Letters
, Vol.
2
, pp.
191
-
198
.
9.
Knox
,
D. P.
,
Stokoe
,
K. H.
, II
, and
Kopperman
,
S. E.
,
1982
, “
Effect of State of Stress on Velocity of Low Amplitude Shear Waves Propagating along Principal Stress Directions in Dry Sand
,” Geotechnical Engineering Report GR 82-23,
University of Texas at Austin
.
10.
Mitchell
,
J. K.
,
1993
,
Fundamentals of Soil Behavior
, 2nd ed.,
John Wiley & Sons, Inc.
,
New York
.
11.
Olsen
,
H. W.
,
Nelson
,
K. R.
, and
Gill
,
J. D.
,
1989
, “
Flow Pump Applications in Geotechnical Measurements
,”
Proceedings
,
Second International Symposium on Environmental Geotechnology
,
Tongji University
,
Shanghai, China
, Vol.
2
, pp.
1
-
22
.
12.
Pusch
,
R.
,
1973
, “
Influence of Organic Matter on the Geotechnical Properties of Clays
,” Document D-11,
Swedish National Building Research Institute
,
Stockholm
.
13.
Richardson
,
M. D.
,
1994
, “
Investigating the Coastal Benthic Boundary Layer
,”
EOS, Transactions, American Geophysical Union
, Vol.
75
, No.
17
, pp.
201
-
206
.
14.
Sandbaeken
,
G.
,
Berre
,
T.
, and
Lacasse
,
S.
, “
Oedometer Testing at the Norwegian Geotechnical Institute
,”
Consolidation of Soils
, ASTM STP 892,
ASTM
,
West Conshohocken, PA
, pp.
1986
, pp.
329
-
353
.
15.
Silva
,
A. J.
,
Brandes
,
H. G.
, and
Veyera
,
G. E.
,
1996
, “
Geotechnical Characterization of Surficial High-Porosity Sediments in Eckernförde Bay
,”
Geo-Marine Letters
 0276-0460, Vol.
16
, pp.
167
-
174
.
16.
Silva
,
A. J.
,
Sadd
,
M. H.
,
Veyera
,
G. E.
, and
Brandes
,
H. G.
,
1993
, “
Variability of Seabed Sediment Microstructure and Stress Strain Behavior in Relation to Acoustic Characteristics
,” First Annual Report, CBBL/SRP, FY 93,
Marine Geomechanics Laboratory, University of Rhode Island
, Narragansett, RI.
17.
Silva
,
A. J.
,
1990
, “
Geotechnical Properties and Processes of Deep Ocean Sediments as Related to Disposal of Toxic Wastes—An Overview
,”
Geotechnical Engineering of Ocean Waste Disposal
, ASTM STP 1087,
Demars
K. R.
and
Chaney
R. C.
, Eds.,
American Society for Testing and Materials
,
West Conshohocken, PA
, pp.
136
-
147
.
18.
Smith
,
R. E.
and
Wahls
,
H. E.
1969
, “
Consolidation Under Constant Rates of Strain
,”
Journal of the Soil Mechanics and Foundations Division, ASCE
, Vol.
95
, No.
SM 2
, Proceedings Paper No. 6452, pp.
519
-
539
.
19.
Stoll
,
R. D.
,
1989
,
Sediment Acoustics
,
Springer Verlag, Inc.
20.
Wissa
,
A. E. Z.
,
Christian
,
J. T.
,
Davis
,
E. H.
, and
Heiberg
,
S.
, “
Consolidation at Constant Rate of Strain
,”
Journal of the Soil Mechanics and Foundations Division, ASCE
, Vol.
97
, No.
SM10
,
10
1971
, pp.
1393
-
1413
.
This content is only available via PDF.
You do not currently have access to this content.