Abstract

A theoretical model is presented that characterizes the effect of hydraulic gradient on measured hydraulic conductivity in the laboratory. A closed-form equation is derived for the distribution of total head within a hydraulic conductivity test specimen as a function of specimen height, boundary stress conditions, compression index, and change of hydraulic conductivity index. From this expression, corresponding equations for the distributions of local pore pressure, effective stress, void ratio, hydraulic gradient, and hydraulic conductivity are presented. Two laboratory experiments were performed using a clay slurry to assess the validity of the theory: (1) an end-of-primary incremental loading consolidation test with direct hydraulic conductivity measurements, and (2) a rigid-wall hydraulic conductivity test with local pore pressure measurements. Using material properties obtained from the consolidation test, the theory predicted correctly the behavior of the hydraulic conductivity test specimen for two values of equivalent hydraulic gradient. It is concluded from this research that excessive hydraulic gradients applied during hydraulic conductivity testing can cause reductions in measured hydraulic conductivity. The magnitude of the effect is expected to be more important for normally consolidated soils with high compressibility, such as soft clays and soil-bentonite slurries.

References

1.
Al-Tabbaa
,
A.
and
Wood
,
D. M.
,
1987
, “
Some Measurements of the Permeability of Kaolin
,”
Geotechnique
 0016-8505, Vol.
37
, No.
4
, pp.
499
-
503
.
2.
ASTM D 5084-90,
1994
,
Test Method for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter
,
Annual Book of ASTM Standards
, Vol.
04.09
, pp.
1161
-
1168
.
3.
Baxter
,
C. D. P.
,
1994
, “
Gradient Effects on Measured Hydraulic Conductivity
,” Master of Science thesis,
School of Civil Engineering, Purdue University
, West Lafayette, IN.
4.
Baxter
,
C. D. P.
,
Fox
,
P. J.
, and
Leonards
,
G. A.
,
1995
, “
Gradient Effects on Measured Hydraulic Conductivity
,”
The Geoenvironment 2000
, Geotechnical Special Publication No. 46, Vol.
1
,
American Society of Civil Engineers
,
New York
, pp.
746
-
757
.
5.
Carpenter
,
G. W.
and
Stephenson
,
R. W.
,
1986
, “
Permeability Testing in the Triaxial Cell
,”
Geotechnical Testing Journal
 0149-6115, Vol.
9
, No.
1
, pp.
3
-
9
.
6.
Daniel
,
D. E.
,
1994
, “
State of the Art: Laboratory Hydraulic Conductivity Tests for Saturated Soils
,”
Hydraulic Conductivity and Waste Contaminant Transport in Soil
, ASTM STP 1142,
Daniel
D. E.
and
Trautwein
S. J.
, Eds.,
American Society for Testing and Materials
,
West Conshohocken, PA
, pp.
30
-
78
.
7.
Daniel
,
D. E.
,
Anderson
,
D. C.
, and
Boynton
,
S. S.
,
1985
, “
Fixed-Wall Versus Flexible-Wall Permeameters
,”
Hydraulic Barriers in Soil and Rock
, ASTM STP 874,
Johnson
A. I.
,
Frobel
R. K.
,
Cavalli
N. J.
, and
Pettersson
C. B.
, Eds.,
American Society for Testing and Materials
,
West Conshohocken, PA
, pp.
107
-
123
.
8.
Dunn
,
R. J.
and
Mitchell
,
J. K.
,
1984
, “
Fluid Conductivity Testing of Fine-Grained Soil
,”
Journal of Geotechnical Engineering
 0733-9410, American Society of Civil Engineers, Vol.
110
, No.
11
, pp.
1648
-
1665
.
9.
Edil
,
T. B.
and
Erickson
,
A. E.
,
1985
, “
Procedure and Equipment Factors Affecting Permeability Testing of a Bentonite-Sand Liner Material
,”
Hydraulic Barriers in Soil and Rock
, ASTM STP 874,
Johnson
A. I.
,
Frobel
R. K.
,
Cavalli
N. J.
, and
Pettersson
C. B.
, Eds.,
American Society for Testing and Materials
,
West Conshohocken, PA
, pp.
155
-
170
.
10.
Evans
,
J. C.
,
Costa
,
M. J.
, and
Cooley
,
B.
,
1995
, “
The State-of-Stress in Soil-Bentonite Slurry Trench Cutoff Walls
,”
The Geoenvironment 2000
, Geotechnical Special Publication No. 46, Vol.
2
,
American Society of Civil Engineers
,
New York
, pp.
1173
-
1191
.
11.
Goldenberg
,
L. C.
,
Hutcheon
,
I.
,
Wardlaw
,
N.
, and
Melloul
,
A. J.
,
1993
, “
Rearrangement of Fine Particles in Porous Media Causing Reduction of Permeability and Formation of Preferred Pathways of Flow: Experimental Findings and a Conceptual Model
,”
Transport in Porous Media
 0169-3913, Vol.
13
, pp.
221
-
237
.
12.
Imai
,
G.
,
1979
, “
Development of a New Consolidation Test Procedure Using Seepage Force
,”
Soils and Foundations
, Vol.
19
, No.
3
, pp.
45
-
60
.
13.
Leonards
,
G. A.
,
1972
, “
Discussion on Shallow Foundations
,”
Proceedings
,
Specialty Conference on Performance of Earth and Earth Supported Structures
,
Purdue University, American Society of Civil Engineers
,
New York
, Vol.
3
, pp.
169
-
173
.
14.
Leonards
,
G. A.
,
Huang
,
A. B.
, and
Ramos
,
J.
,
1991
, “
Piping and Erosion Tests at Conner Run Dam
,”
Journal of Geotechnical Engineering
 0733-9410, American Society of Civil Engineers, Vol.
117
, No.
1
, pp.
108
-
117
.
15.
Mesri
,
G.
and
Godlewski
,
P. M.
,
1979
, “
Closure to ‘Time- and Stress-Compressibility Interrelationship
,’”
Journal of the Geotechnical Engineering Division
 0093-6405, American Society of Civil Engineers, Vol.
105
, No.
GT1
, pp.
106
-
113
.
16.
Mesri
,
G.
and
Choi
,
Y. K.
,
1985
, “
The Uniqueness of End-of-Primary (EOP) Void Ratio-Effective Stress Relationship
,”
Proceedings
,
Eleventh International Conference on Soil Mechanics and Foundation Engineering
,
San Francisco
, Vol.
2
,
Balkema
,
Rotterdam
, pp.
587
-
590
.
17.
Mesri
,
G.
,
Feng
,
T. W.
,
Ali
,
S.
, and
Hayat
,
T. M.
,
1994
, “
Permeability Characteristics of Soft Clays
,”
Proceedings
,
Thirteenth International Conference on Soil Mechanics and Foundation Engineering
,
New Delhi, India
, Vol.
1
,
Balkema
,
Rotterdam
, pp.
187
-
192
.
18.
Mitchell
,
J. K.
,
1993
,
Fundamentals of Soil Behavior
, 2nd ed.,
John Wiley & Sons
,
New York
.
19.
Mitchell
,
J. K.
and
Younger
,
J. S.
,
1967
, “
Abnormalities in Hydraulic Flow Through Fine-Grained Soils
,”
Permeability and Capillarity of Soils
, ASTM STP 417,
American Society for Testing and Materials
,
West Conshohocken, PA
, pp.
106
-
139
.
20.
Nagaraj
,
T. S.
,
Pandian
,
N. S.
, and
Narasimha Raju
,
P. S. R.
,
1994
, “
Stress-State-Permeability Relations for Overconsolidated Clays
,”
Geotechnique
 0016-8505, Vol.
44
, No.
2
, pp.
349
-
352
.
21.
Olsen
,
H. W.
,
Gill
,
J. D.
,
Wilden
,
A. T.
, and
Nelson
,
K. R.
,
1991
, “
Innovations in Hydraulic-Conductivity Measurements
,”
Transportation Research Record
 0361-1981, No.
1309
, pp.
9
-
17
.
22.
Olson
,
R. E.
and
Daniel
,
D. E.
,
1981
, “
Measurement of the Hydraulic Conductivity of Fine-Grained Soils
,”
Permeability and Groundwater Contaminant Transport
, ASTM STP 746,
Zimmie
T. F.
and
Riggs
C. O.
, Eds.,
American Society for Testing and Materials
,
West Conshohocken, PA
, pp.
18
-
64
.
23.
Pane
,
V.
,
Croce
,
P.
,
Znidarcic
,
D.
,
Ko
,
H.-Y.
,
Olsen
,
H. W.
, and
Schiffman
,
R. L.
,
1983
, “
Effects of Consolidation on Permeability Measurements for Soft Clay
,”
Geotechnique
 0016-8505, Vol.
33
, No.
1
, pp.
67
-
72
.
24.
Quigley
,
R. M.
,
Fernandez
,
F.
, and
Rowe
,
R. K.
,
1988
, “
Clayey Barrier Assessment for Impoundment of Domestic Waste Leachate (Southern Ontario) Including Clay-Leachate Compatibility by Hydraulic Conductivity Testing
,”
Canadian Geotechnical Journal
 0008-3674, Vol.
25
, No.
3
, pp.
574
-
581
.
25.
Shackelford
,
C. D.
,
1994
, “
Waste-Soil Interactions that Alter Hydraulic Conductivity
,”
Hydraulic Conductivity and Waste Contaminant Transport in Soil
, ASTM STP 1142,
Daniel
D. E.
and
Trautwein
S. J.
, Eds.,
American Society for Testing and Materials
,
West Conshohocken, PA
, pp.
111
-
168
.
26.
Shackelford
,
C. D.
and
Glade
,
M. J.
,
1994
, “
Constant-Flow and Constant-Gradient Permeability Tests on Sand-Bentonite-Fly Ash Mixtures
,”
Hydraulic Conductivity and Waste Contaminant Transport in Soil
,
ASTM STP 1142
,
Daniel
D. E.
and
Trautwein
S. J.
, Eds.,
American Society for Testing and Materials
,
West Conshohocken, PA
, pp.
521
-
545
.
27.
Vaughan
,
P. R.
,
1994
, “
Assumption, Prediction, and Reality in Geotechnical Engineering
,”
Geotechnique
 0016-8505, Vol.
44
, No.
4
, pp.
573
-
609
.
This content is only available via PDF.
You do not currently have access to this content.