Update search
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- Issue
- Volume
- References
- Paper No
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- Issue
- Volume
- References
- Paper No
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- Issue
- Volume
- References
- Paper No
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- Issue
- Volume
- References
- Paper No
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- Issue
- Volume
- References
- Paper No
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- Issue
- Volume
- References
- Paper No
Journal citation
NARROW
Date
Availability
1-10 of 10
Students
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Article Type: Research-Article
J. Eng. Gas Turbines Power. October 2019, 141(10): 101008.
Paper No: GTP-19-1323
Published Online: August 2, 2019
Abstract
Students from Princeton University partnered with students from the American University in Cairo in a three-week intensive hands-on field experience in Egypt. The project was to assemble, install, and test a wind mill-driven pump used for irrigation and to survey communities across Egypt in the Delta and Red Sea coast to assess water needs in these communities. The course offered a perspective on sustainable development in Egypt followed by water and energy resource challenges in Egypt's diverse geographic areas. Students assembled a wind pump and installed it at the American University in Cairo for testing prior to installation at El Heiz, a desert oasis community in the Western Desert. The students were selected from diverse backgrounds in Mechanical and Aerospace Engineering, Civil and Environmental Engineering, Computer Engineering, and Operations Research and Financial Engineering, and learned the value of having diverse teams address engineering problems in a truly global context. This paper presents the case study including lessons learned in implementation of this experiential learning field project.
Journal Articles
Article Type: Expert View
J. Eng. Gas Turbines Power. December 2017, 139(12): 124701.
Paper No: GTP-17-1235
Published Online: September 13, 2017
Abstract
A purposeful approach has been taken to match teaching pedagogies (techniques), learning experiences, and assessment methods to various types of students learning in undergraduate aerospace propulsion courses at the junior-level at the United States Air Force Academy (USAFA) and senior-level at Oklahoma State University (OSU), Stillwater, OK. Prior studies in the scholarship of teaching and learning have shown the benefits of matching assessment methods, as well as teaching pedagogies and learning experiences, to the types of students learning associated with desired educational outcomes. Literature suggests the best method for teaching and assessing student’ cognitive learning is through explanation and presentation. Oral assessments have been implemented at the Air Force Academy and Oklahoma State University to evaluate students' cognitive learning in undergraduate aerospace propulsion and power courses. An oral midterm exam was performed to assess students' acquisition knowledge and understanding of fundamental concepts, the type of learning occurring early in course lesson sequences. End-of-semester design project poster sessions and presentations served as summative oral assessments of students' creative thinking, decision making, and professional judgment. Conversely, two written midterm exams and a final exam primarily focused on assessing students' problem solving skills and less on comprehensive knowledge. Oral assessments also served as reflective thinking experiences that reinforced student learning. Student feedback on oral assessment methods was collected through surveys conducted after each assessment. Survey results not only revealed the effectiveness of using oral assessments but also on how to improve their design and implementation, including the use of information technology (IT) and broader curricular employment.
Journal Articles
Article Type: Research-Article
J. Eng. Gas Turbines Power. May 2017, 139(5): 052604.
Paper No: GTP-16-1418
Published Online: January 10, 2017
Abstract
This paper describes an innovative, three-day, turbomachinery research project for Japanese and British high-school students. The project is structured using modern teaching theories that encourage student curiosity and creativity. The experience develops teamwork and communication and helps to break down the cultural and linguistic barriers between students from different countries and backgrounds. The approach provides a framework for other hands-on research projects that aim to inspire young students to undertake a career in engineering. The project is part of the Clifton Scientific Trust's annual UK–Japan Young Scientist Workshop Programme. This work focuses on compressor design for jet engines and gas turbines. It includes lectures introducing students to turbomachinery concepts, a computational design study of a compressor blade section, experimental tests with a low-speed cascade, and tutorials in data analysis and aerodynamic theory. The project also makes use of 3D printing technology, so that students go through the full engineering design process, from theory, through design, to practical experimental testing. Alongside the academic aims, students learn what it is like to study engineering at university, discover how to work effectively in a multinational team, and experience a real engineering problem. Despite a lack of background in fluid dynamics and the limited time available, the lab work and end-of-project presentation show how far young students can be stretched when they are motivated by an interesting problem.
Journal Articles
Article Type: Research-Article
J. Eng. Gas Turbines Power. May 2016, 138(5): 052604.
Paper No: GTP-15-1370
Published Online: November 3, 2015
Abstract
An ambitious project in propulsion was introduced as part of the final-year integrator project offerings of the mechanical and aerospace engineering programs at École Polytechnique de Montréal in 2011–2012. It has been running successfully for the past three academic years. The project consists in the design, fabrication, and placement into service of a functional instrumented multistage compressor test rig, including the compressor, for research in compressor aerodynamics. A team of 15–17 senior-year undergraduate engineering students is given a set of design and performance specifications and measurement requirements, an electric motor and drive, a data acquisition system, and some measurement probes. They must complete the project in two semesters with a budget on the order of Can$15,000. The compressor is made from rapid prototyping to keep production cost and time reasonable. However, the required rotation speed of 7200 rpm stretches the limits of the plastic material and presents the same structural challenges as industrial compressors running at higher speeds. The students are split into subteams according to the required disciplines, namely, compressor aerodynamics, general aerodynamics, structures, dynamics, mechanical design and integration, instrumentation, and project management. For the initial phase, which covers the first two months, the students receive short seminars from experts in academia and industry in each discipline and use the knowledge from fundamental engineering courses to analytically model the different components to come up with a preliminary design. In the second phase, covering three to six, the students are trained at commercial simulation tools and use them for detailed analysis to refine and finalize the design. In each of the first two phases, the students present their work in design reviews with a jury made up of engineers from industry and supervising professors. During the final phase, the compressor is built and tested with data acquisition and motor control programs written by the students. Finally, the students present their results with comparison of measured performance with numerical and analytical predictions from the first two phases and hand over their compressor rig with design and test reports as well as a user manual and an assembly/maintenance manual. This complete project allows the students to put into practice virtually all the courses of their undergraduate engineering curriculum while giving them an extensive taste of the rich and intellectually challenging environment of gas turbine and turbomachinery engineering.
Journal Articles
Article Type: Research-Article
J. Eng. Gas Turbines Power. March 2015, 137(3): 032507.
Paper No: GTP-14-1382
Published Online: October 7, 2014
Abstract
The use of advanced pedagogical methodologies in connection with advanced use of modern information technology for delivery enables new ways of communicating, of exchanging knowledge, and of learning that are gaining increasing relevance in our society. Remote laboratory exercises offer the possibility to enhance learning for students in different technical areas, especially to the ones not having physical access to laboratory facilities and thus spreading knowledge in a world-wide perspective. A new “Remote Flutter Laboratory” has been developed to introduce aeromechanics engineering students and professionals to aeroelastic phenomena in turbomachinery. The laboratory is world-wide unique in the sense that it allows global access for learners anywhere and anytime to a facility dedicated to what is both a complex and relevant area for gas turbine design and operation. The core of the system consists of an aeroelastically unstable turbine blade row that exhibits self-excited and self-sustained flutter at specific operating conditions. Steady and unsteady blade loading and motion data are simultaneously acquired on five neighboring suspended blades and the whole system allows for a distant-based operation and monitoring of the rig as well as for automatic data retrieval. This paper focuses on the development of the Remote Flutter Laboratory exercise as a hands-on learning platform for online and distant-based education and training in turbomachinery aeromechanics enabling familiarization with the concept of critical reduced frequency and of flutter phenomena. This laboratory setup can easily be used “as is” directly by any turbomachinery teacher in the world, free of charge and independent upon time and location with the intended learning outcomes as specified in the lab, but it can also very easily be adapted to other intended learning outcomes that a teacher might want to highlight in a specific course. As such it is also a base for a turbomachinery repository of advanced remote laboratories of global uniqueness and access. The present work documents also the pioneer implementation of the LabSocket System for the remote operation of a wind tunnel test facility from any Internet-enabled computer, tablet or smartphone with no end-user software or plug-in installation.
Journal Articles
Article Type: Research-Article
J. Eng. Gas Turbines Power. September 2013, 135(9): 091204.
Paper No: GTP-13-1171
Published Online: August 21, 2013
Abstract
In the past several years, the traditional fourth year “hands-on” requirement for engineering programs in the U.S. is being satisfied by what is now called the capstone senior design project (herein referred to as CSDP). The engineering CSDP program director sends a call to the local industries within the state for solicitation of project proposals that will be worked on by the interdisciplinary engineering student team. Each industrial participant will have to contribute a preset budget defined by the program to the engineering school for each submitted proposal that has been selected by the student team. Honeywell has been an avid participant in the University of Arizona CSDP program for the past several years. Rather than define a simple CSDP that can be fully completed in the first attempt, the author has sought the value of teaching iterative design to the student team by defining a multiyear CSDP scope, in that after the first year, each successive team learns from the past design and implements its own improvement to the design it inherits. This paper gives an overview of Honeywell's CSDP titled “Measuring Heat Transfer in Annular Flow Between Co-Rotating or Counter-Rotating Cylinders.” Now in its fourth iteration, each wave of student team has been able to understand the complexity of the design, the challenge of testing for structural integrity, the controllability of implementing a balanced system of heat gain and loss to reach steady state operation, the evolution of starting with slip ring temperature measurements and ending at wireless telemetry, DOE testing to rank influencing variables, and heat transfer correlation of the data relating Nusselt versus Reynolds number. Beginning with the first year CSDP team, this paper covers the design approach selected by that team, its results, and the lessons learned as a result of failure in meeting the full requirements, which is then taken on by the next group of students the following year.
Journal Articles
Article Type: Research-Article
J. Eng. Gas Turbines Power. July 2013, 135(7): 072601.
Paper No: GTP-13-1018
Published Online: June 12, 2013
Abstract
Despite the need for highly qualified experts, multidisciplinary gas turbine conceptual design has not been a common study topic in traditional postgraduate curriculums. Although many courses on specialized topics in gas turbine technology take place, limited attention is given on connecting these individual topics to the overall engine design process. Teaching conceptual design as part of a postgraduate curriculum, or as an intensive short course, may help to address the industrial need for engineers with early qualifications on the topic, i.e., prior to starting their careers in the gas turbine industry. This paper presents details and lessons learned from: (i) the integration of different elements of conceptual design in an existing traditional Master of Science (MSc) course on gas turbine technology through the introduction of group design tasks and (ii) the development of an intensive course on gas turbine multidisciplinary conceptual design as a result of an international cooperation between academia and industry. Within the latter course, the students were grouped in competing teams and were asked to produce their own gas turbine conceptual design proposals within a given set of functional requirements. The main concept behind the development of the new design tasks, and the new intensive course, has been to effectively mimic the dynamics of small conceptual design teams, as often encountered in industry. The results presented are very encouraging in terms of enhancing student learning and developing engineering skills.
Journal Articles
Article Type: Technical Briefs
J. Eng. Gas Turbines Power. February 2010, 132(2): 024502.
Published Online: November 11, 2009
Abstract
The Thermochemical Power Group of the University of Genoa, Italy, has developed a new “Gas Turbine” laboratory to introduce undergraduate students to the Gas Turbines and Innovative Cycles course, and Ph.D.s to advanced experimental activities in the same field. In the laboratory a general-purpose experimental rig, based on a modified commercial 100 kW recuperated micro gas turbine, was installed and fully instrumented. One of the main objectives of the laboratory is to provide both students and researchers with several experimental possibilities to obtain data related to the gas turbine steady-state, transient, and dynamic performance, including the effect of interaction between the turbomachines (especially the compressor), and more complex innovative gas turbine cycle configurations, such as recuperated, humid air, and hybrid (with high temperature fuel cells). The facility was partially funded by two Integrated Projects of the EU VI Framework Program (Felicitas and LARGE-SOFC) and the Italian Government (PRIN project), and it was designed with a high flexibility approach including: flow control management, cogenerative and trigenerative applications, downstream compressor volume variation, grid-connected or stand-alone operations, recuperated or simple cycles, and room temperature control. The paper also shows, as an example of the possibilities offered by the rig, experimental data obtained by both Master and Ph.D. students. The tests presented here are essential for understanding commercial gas turbines and microturbine performance, control strategy development, and theoretical model validation.
Journal Articles
Article Type: Research Papers
J. Eng. Gas Turbines Power. January 2009, 131(1): 012303.
Published Online: October 10, 2008
Abstract
In 1997 the Turbomachinery Group of the University of Liège decided to acquire a small jet engine to illustrate the courses in propulsion and to provide the students with the opportunity to get some experience on data measurement, acquisition, and interpretation. Among others, the SR-30 engine from Turbine Technology Ltd. Chetek, WI was chosen. It consists of a single spool, single flow engine with a centrifugal compressor, a reversed combustion chamber, an axial turbine, and a fixed convergent nozzle. This engine was installed on a test bench allowing for manual control and providing fuel and oil to the engine. The original setup included measurements of intercomponent pressure and temperatures, exhaust gas temperature, and rotational speed. Since then both the engine and the test bench have been deeply modified. These modifications were led by a triple objective: the improvement and the enrichment of the measurement chain, the widening of the engine’s operational domain, and, last but not the least, the wish to offer appealing hands-on projects to the students. All these modifications were performed at the University of Liège and were conducted by the students as part of their Master theses. Several performance models of the engine were developed to support data validation and engine condition diagnostic. This paper summarizes the developments conducted with and by the students, and presents the experience that was gained by using this engine as a support for education.
Journal Articles
Article Type: Technical Papers
J. Eng. Gas Turbines Power. July 2001, 123(3): 595–603.
Published Online: December 1, 2000
Abstract
An interactive learning platform which sets a new standard for electronic learning of gas turbine technology in a global life-long learning perspective is presented (Fig. 1). The platform contains a theoretical section in the form of several pages for each chapter available, with a significant number of related interactive simulations, movies, animations, virtual laboratory exercises, virtual study visits and realistic case studies. A significant background information related to historical development in the field, a display of existing components, nomenclature, multi-lingual dictionary and keywords, as well as questions for self-assessment and exams, an electronic communication group and a database of the user’s “successes and failures,” enhance the learning process in a significant way. The program is intended as a platform for an international collaboration on learning heat and power technology. It can be used both in the classroom as well as for self-studies and is as such well adapted for both university and post-university learning, both on and off campus. Tools to facilitate the introduction of new material exist. It is thus hoped that teachers at different universities can join forces and in a noncompetitive way introduce material which can be shared, instead of developing similar simulations with somewhat different interfaces. The long-term goal of the learning platform is of course that users worldwide will have the possibility to access the best teaching material available from any specialist, and that this material will contain supplementary pedagogical information which will enhance the learning both at a university and a post-university level.