Update search
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- Issue
- Volume
- References
- Paper No
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- Issue
- Volume
- References
- Paper No
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- Issue
- Volume
- References
- Paper No
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- Issue
- Volume
- References
- Paper No
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- Issue
- Volume
- References
- Paper No
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- Issue
- Volume
- References
- Paper No
Journal citation
NARROW
Date
Availability
1-20 of 103
Soot
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Accepted Manuscript
Article Type: Research-Article
J. Eng. Gas Turbines Power.
Paper No: GTP-19-1438
Published Online: September 1, 2019
Abstract
Fans used in tunnel ventilation operate for decades in an atmosphere that carries dust, soot, and other solid particles. The formation of deposit on the rotor blades, considering a so long time of exposition to this particle-laden flow, is highly probable. A not negligible quantity of deposited material can produce damages on the performance of the fan, but also mass unbalancing, which is potentially dangerous for the structural integrity of the fan components. We applied our simulation tool to study a case of deposition on a large axial fan blade, used for tunnel ventilation. The outcome of the study is a parametric map of fouled blade geometries, obtained by simulating the deposition process over the increasing quantity of ingested particles mixture. The final map correlates the level and shape of deposit to the overall amount of particle ingested by the fan in its operating life. The same map can be easily used to predict the time needed in a specific application to reach any specific deposit thickness. The evolution algorithm and simulation tools developed in the past years by the authors was applied to predict the modified geometry of eroded rotor blades. Here the same framework is updated to simulate the deposit problem. We use an integrated multiphase solver, coupled with a geometry update method. The solver can iteratively simulate the flow field, compute the particle tracking, dispersion and deposit processes, and modify the geometry (and mesh) according to the predicted deposit shape and rate.
Journal Articles
Article Type: Research-Article
J. Eng. Gas Turbines Power. September 2019, 141(9): 091017.
Paper No: GTP-19-1088
Published Online: July 12, 2019
Abstract
In this study, the application of ultra-high fuel injection pressure (up to 300 MPa) is compared with that of a post injection strategy for the reduction of soot at medium load conditions with exhaust gas recirculation (EGR) rates greater than 40%. Emissions were predominantly studied at the engine's maximum brake torque speed of 1600 rpm. A 4.5-L, four-cylinder diesel engine with series turbochargers and a high-pressure EGR loop was used for all tests. Results indicate that, ultra-high injection pressures may not have large effects on hydrocarbons (HC) or CO emissions. Small soot reductions were achieved at the expense of increased NO x emissions. Post injections resulted in larger soot reductions for a small increase in NO x while allowing lower fuel pressures to be utilized. The increase in NO x emissions with a post injection was observed to be comparatively less at increased engine speeds. For operation at high EGR, post injections were observed to be more effective at reducing soot than ultra-high injection pressures. Both injection pressure and post injections were observed to have small to negligible effects on engine fuel consumption, leaving EGR and injection timing as the primary efficiency drivers at the conditions studied.
Journal Articles
Article Type: Research-Article
J. Eng. Gas Turbines Power. July 2019, 141(7): 071022.
Paper No: GTP-18-1601
Published Online: April 17, 2019
Abstract
We report herein a computational study to characterize the effect of oxygenation on polycyclic aromatic hydrocarbons (PAHs) and soot emissions in ethylene diffusion flames at pressures 1–8 atm. Laminar oxygenated flames are established in a counterflow configuration by using N 2 diluted fuel stream along with O 2 -enriched oxidizer stream such that the stoichiometric mixture fraction ( ζ st ) is varied, but the adiabatic flame temperature is not materially changed. Simulations are performed using a validated fuel chemistry model and a detailed soot model. The primary objective is to enhance the fundamental understanding of PAHs and soot formation in oxygenated flames at elevated pressures. At a given pressure, as the level of oxygenation ( ζ st ) is increased, we observe a significant reduction in PAHs (benzene and pyrene) and consequently in soot formation. On the other hand, at a fixed ζ st , as pressure is increased, it leads to increased PAHs formation and thus higher soot emission. Both soot number density and soot volume fraction increase with pressure. The reaction path analysis indicates that at higher pressures, the C 2 /C 4 path becomes more significant for benzene formation compared to the propargyl recombination path. Results further indicate that the effectiveness of oxygenation in reducing the formation of pyrene and soot becomes less pronounced at higher pressures. In contrast, the effect of pressure on pyrene and soot formation becomes more pronounced at higher oxygenation levels. The behavior can be explained by examining the flame structure and hydrodynamics effects at different pressure and oxygenation levels.
Journal Articles
Article Type: Research-Article
J. Eng. Gas Turbines Power. April 2019, 141(4): 041013.
Paper No: GTP-18-1070
Published Online: November 20, 2018
Abstract
Injection flow dynamics plays a significant role in fuel spray; this process controls the fuel–air mixing, which in turn is critical for the combustion and emissions process in diesel engine. In the current study, an integrated spray, combustion, and emission numerical model is developed for diesel engine computations based on the general transport equation analysis (GTEA) code. The model is first applied to predict the effect of turbulence inside the nozzle, which is considered by the submodel of hybrid breakup model on diesel spray process. The results indicate that turbulence term enhances the rate of breakup, resulting in more new droplets and smaller droplet sizes, leading to high evaporation rate with more evaporated mass. The model is also applied to simulate combustion and soot formation process of diesel. The effects of ambient density, ambient temperature, oxygen concentration and reaction mechanism on ignition delay, flame lift-off length, and soot formation are analyzed and discussed. The results show that although higher ambient density and temperature reduce the ignition delay and cause the flame stabilization location to move upstream, this is not helpful for fuel–air mixing because it increases the soot level in the fuel jet. While higher oxygen concentration has negative effects on soot formation. In addition, the model is employed to simulate the combustion and emission characteristics of a low-temperature combustion engine. The overall agreement between the measurements and predictions of in-cylinder pressure, heat release, and emission characteristics are satisfactory.
Journal Articles
Philippe Dagaut, Yuri Bedjanian, Guillaume Dayma, Fabrice Foucher, Benoît Grosselin, Manolis Romanias, Roya Shahla
Article Type: Research-Article
J. Eng. Gas Turbines Power. March 2019, 141(3): 031028.
Paper No: GTP-18-1276
Published Online: November 14, 2018
Abstract
The combustion of conventional fuels (diesel and Jet A-1) with 10–20% vol oxygenated biofuels (ethanol, 1-butanol, methyl octanoate, rapeseed oil methyl ester (RME), diethyl carbonate, tri(propylene glycol)methyl ether, i.e., CH 3 (OC 3 H 6 ) 3 OH, and 2,5-dimethylfuran (2,5-DMF)) and a synthetic paraffinic kerosene (SPK) was studied. The experiments were performed using an atmospheric pressure laboratory premixed flame and a four-cylinder four-stroke diesel engine operating at 1500 rpm. Soot samples from kerosene blends were collected above a premixed flame for analysis. Polyaromatic hydrocarbons (PAHs) were extracted from the soot samples. After fractioning, they were analyzed by high-pressure liquid chromatography (HPLC) with UV and fluorescence detectors. C 1 to C 8 carbonyl compounds (CBCs) were collected at the diesel engine exhaust on 2,4-dinitrophenylhydrazine coated cartridges (DNPH) and analyzed by HPLC with UV detection. The data indicated that blending conventional fuels with biofuels has a significant impact on the emission of both CBCs and PAHs adsorbed on soot. The global concentration of 18 PAHs (1-methyl-naphthalene, 2-methyl-naphthalene, and the 16 U.S. priority EPA PAHs) on soot was considerably lowered using oxygenated fuels, except 2,5-DMF. Conversely, the total carbonyl emission increased by oxygenated biofuels blending. Among them, ethanol and 1-butanol were found to increase considerably the emissions of CBCs.
Journal Articles
Article Type: Research-Article
J. Eng. Gas Turbines Power. October 2018, 140(10): 101501.
Paper No: GTP-17-1353
Published Online: June 19, 2018
Abstract
Nowadays, models predicting soot emissions are neither able to describe correctly fine effects of technological changes on sooting trends nor sufficiently validated at relevant operating conditions to match design office quantification needs. Yet, phenomenological descriptions of soot formation, containing key ingredients for soot modeling exist in the literature, such as the well-known Leung et al. model (Combust Flame 1991). However, when blindly applied to aeronautical combustors for different operating conditions, this model fails to hierarchize operating points compared to experimental measurements. The objective of this work is to propose an extension of the Leung model over a wide range of condition relevant of gas turbines operation. Today, the identification process can hardly be based on laboratory flames since few detailed experimental data are available for heavy-fuels at high pressure. Thus, it is decided to directly target smoke number values measured at the engine exhaust for a variety of combustors and operating conditions from idling to take-off. A large eddy simulation approach is retained for its intrinsic ability to reproduce finely unsteady behavior, mixing, and intermittency. In this framework, The Leung model for soot is coupled to the thickened flame model (TFLES) for combustion. It is shown that pressure-sensitive laws for the modeling constant of the soot surface chemistry are sufficient to reproduce engine emissions. Grid convergence is carried out to verify the robustness of the proposed approach. Several cases are then computed blindly to assess the prediction capabilities of the extended model.
Journal Articles
Article Type: Research-Article
J. Eng. Gas Turbines Power. September 2018, 140(9): 092801.
Paper No: GTP-18-1082
Published Online: May 24, 2018
Abstract
A partially premixed combustion (PPC) approach was applied in a single cylinder diesel research engine in order to characterize engine power improvements. PPC is an alternative advanced combustion approach that generally results in lower engine-out soot and oxides of nitrogen (NO x ) emission, with a moderate penalty in engine-out unburned hydrocarbon (UHC) and carbon monoxide (CO) emissions. In this study, PPC is accomplished with a minority fraction of jet fuel injected into the intake manifold, while the majority fraction of jet fuel is delivered directly to the combustion chamber near the start of combustion (SOC). Four compression ratios (CR) were studied. Exhaust emissions plus exhaust opacity and particulate measurements were performed during the experiments in addition to fast in-cylinder combustion metrics. It was seen that as CR increased, the soot threshold equivalence ratio decreased for conventional diesel combustion; however, this afforded an increased opportunity for higher levels of port injected fuel leading to power increases from 5% to 23% as CR increased from 14 to 21.5. PPC allowed for these power increases (defined by a threshold opacity level of 3%) due to smaller particles (and lower overall number of particles) in the exhaust that influence measured opacity less significantly than larger and more numerous conventional diesel combustion exhaust particulates. Carbon monoxide levels at the higher PPC-driven power levels were only modestly higher, although NO x was generally lower due to the overall enriched operation.
Journal Articles
Article Type: Research-Article
J. Eng. Gas Turbines Power. June 2018, 140(6): 061506.
Paper No: GTP-17-1246
Published Online: February 13, 2018
Abstract
In this work, a single sector lean burn model combustor operating in pilot only mode has been investigated using both experiments and computations with the main objective of analyzing the flame structure and soot formation at conditions relevant to aero-engine applications. Numerical simulations were performed using the large eddy simulation (LES) approach and the conditional moment closure (CMC) combustion model with detailed chemistry and a two-equation model for soot. The CMC model is based on the time-resolved solution of the local flame structure and allows to directly take into account the phenomena associated to molecular mixing and turbulent transport, which are of great importance for the prediction of emissions. The rig investigated in this work, called big optical single sector rig, allows to test real scale lean burn injectors. Experiments, performed at elevated pressure and temperature, corresponding to engine conditions at part load, include planar laser-induced fluorescence of OH (OH-PLIF) and phase Doppler anemometry (PDA) and have been complemented with new laser-induced incandescence (LII) measurements for soot location. The wide range of measurements available allows a comprehensive analysis of the primary combustion region and can be exploited to further assess and validate the LES/CMC approach to capture the flame behavior at engine conditions. It is shown that the LES/CMC approach is able to predict the main characteristics of the flame with a good agreement with the experiment in terms of flame shape, spray characteristics and soot location. Finite-rate chemistry effects appear to be very important in the region close to the injection location leading to the lift-off of the flame. Low levels of soot are observed immediately downstream of the injector exit, where a high amount of vaporized fuel is still present. Further downstream, the fuel vapor disappears quite quickly and an extended region characterized by the presence of pyrolysis products and soot precursors is observed. The strong production of soot precursors together with high soot surface growth rates lead to high values of soot volume fraction in locations consistent with the experiment. Soot oxidation is also very important in the downstream region resulting in a decrease of the soot level at the combustor exit. The results show a very promising capability of the LES/CMC approach to capture the main characteristics of the flame, soot formation, and location at engine relevant conditions. More advanced soot models will be considered in future work in order to improve the quantitative prediction of the soot level.
Journal Articles
Anandkumar Makwana, Suresh Iyer, Milton Linevsky, Robert Santoro, Thomas Litzinger, Jacqueline O'Connor
Article Type: Research-Article
J. Eng. Gas Turbines Power. March 2018, 140(3): 031505.
Paper No: GTP-17-1347
Published Online: October 17, 2017
Abstract
The objective of this study is to understand the effects of fuel volatility on soot emissions. This effect is investigated in two experimental configurations: a jet flame and a model gas turbine combustor. The jet flame provides information about the effects of fuel on the spatial development of aromatics and soot in an axisymmetric, co-flow, laminar flame. The data from the model gas turbine combustor illustrate the effect of fuel volatility on net soot production under conditions similar to an actual engine at cruise. Two fuels with different boiling points are investigated: n-heptane/n-dodecane mixture and n-hexadecane/n-dodecane mixture. The jet flames are nonpremixed and rich premixed flames in order to have fuel conditions similar to those in the primary zone of an aircraft engine combustor. The results from the jet flames indicate that the peak soot volume fraction produced in the n-hexadecane fuel is slightly higher as compared to the n-heptane fuel for both nonpremixed and premixed flames. Comparison of aromatics and soot volume fraction in nonpremixed and premixed flames shows significant differences in the spatial development of aromatics and soot along the downstream direction. The results from the model combustor indicate that, within experiment uncertainty, the net soot production is similar in both n-heptane and n-hexadecane fuel mixtures. Finally, we draw conclusions about important processes for soot formation in gas turbine combustor and what can be learned from laboratory-scale flames.
Journal Articles
Article Type: Research-Article
J. Eng. Gas Turbines Power. December 2017, 139(12): 121506.
Paper No: GTP-17-1234
Published Online: September 6, 2017
Abstract
This paper reports an investigation of soot formation in ethylene–air partially premixed flames (PPFs) over a wide range of premixedness. An axisymmetric co-flow configuration is chosen to establish PPFs from the fully nonpremixed to fully premixed conditions. Reducing the fuel flow rate as a percentage of the maximum from the core stream and supplying the same to the annular stream leads to stratification of the reactant concentrations. The thermal power, overall equivalence ratio, and the average velocity in both the streams are maintained constant under all conditions. The soot volume fraction is estimated by light attenuation method, and laser-induced incandescence (LII) is performed to map the soot distribution in the flow field. The soot volume fraction is observed to exhibit an “S”-type trend as the conditions are traversed from near the premixed to the nonpremixed regimes. That is, when traversing from the nonpremixed to near-premixed regime, below 60% fuel flow rate in core, the soot volume fraction drops drastically. The onset of sooting in the PPFs is clearly seen to be at the tip of the rich-premixed flame (RPF) branch of their triple flame structure, which advances upstream toward the base of the flame as the premixing is reduced. The S-type variation is clearly the effect of partial premixing, more specifically due to the presence of the lean premixed flame (LPF) branch of the triple flame. LII intensities are insufficient to capture the upstream advance of the soot onset with decreased premixedness. So, a quick and inexpensive technique to isolate soot luminescence through flame imaging is presented in the paper involving quasi-simultaneous imaging with a 650 nm and a BG-3 filter using a normal color camera.
Journal Articles
Article Type: Research-Article
J. Eng. Gas Turbines Power. October 2017, 139(10): 102803.
Paper No: GTP-17-1055
Published Online: April 25, 2017
Abstract
Soot formation process was investigated for biomass-based renewable diesel fuel, such as biomass to liquid (BTL), and conventional diesel combustion under varied fuel quantities injected into a constant volume combustion chamber. Soot measurement was implemented by two-color pyrometry under quiescent type diesel engine conditions (1000 K and 21% O 2 concentration). Different fuel quantities, which correspond to different injection widths from 0.5 ms to 2 ms under constant injection pressure (1000 bar), were used to simulate different loads in engines. For a given fuel, soot temperature and KL factor show a different trend at initial stage for different fuel quantities, where a higher soot temperature can be found in a small fuel quantity case. but a higher KL factor is observed in a large fuel quantity case generally. Another difference occurs at the end of combustion due to the termination of fuel injection. Additionally, BTL flame has a lower soot temperature, especially under a larger fuel quantity (2 ms injection width). Meanwhile, average soot level is lower for BTL flame, especially under a lower fuel quantity (0.5 ms injection width). BTL shows an overall low sooting behavior with low soot temperature compared to diesel; however, trade-off between soot level and soot temperature needs to be carefully selected when different loads are used.
Journal Articles
Article Type: Research-Article
J. Eng. Gas Turbines Power. May 2017, 139(5): 051502.
Paper No: GTP-16-1406
Published Online: December 7, 2016
Abstract
Two pyrometric tools for measuring soot temperature response in fuel-rich flames under unsteady inlet airflow conditions are developed. High-speed pyrometry using a high-speed color camera is used in producing soot temperature distributions, with its results compared with those of global soot temperature response measured using a multiwavelength pyrometer. For the former, the pixel red, green, and blue (RGB) values pertaining to respective bandwidths of red, green, and blue filters are used to calculate temperature and for the latter, the emission from whole flame at 660 nm, 730 nm, and 800 nm is used to measure temperature. The combustor, running on jet-A fuel, achieves unsteady inlet airflow using a siren running at frequencies of 150 and 250 Hz and with modulation levels (root mean square (RMS)) 20–50% of mean velocity. Spatiotemporal response of flame temperature measured by the high-speed camera is presented by phase-averaged with average subtracted images and by fast Fourier transform (FFT) at the modulation frequencies of inlet velocity. Simultaneous measurement of combustor inlet air velocity and flame soot temperature using the multiwavelength pyrometer is used in calculating the flame transfer function (FTF) of flame temperature response to unsteady inlet airflow. The results of global temperature and temperature fluctuation from the three-color pyrometer show qualitative agreement with the local temperature response measured by the high-speed camera. Over the range of operating conditions employed, the overall flame temperature fluctuation increases linearly with respect to the inlet velocity fluctuation. The two-dimensional map of flame temperature under unsteady combustion determined using a high-speed digital color camera shows that the local temperature fluctuation during unsteady combustion occurs over relatively small region of flame and its level is greater (∼10% to 20%) than that of overall temperature fluctuation (∼1%).
Journal Articles
Article Type: Research-Article
J. Eng. Gas Turbines Power. March 2017, 139(3): 031503.
Paper No: GTP-16-1277
Published Online: September 27, 2016
Abstract
The computational modeling of soot in aircraft engines is a formidable challenge, not only due to the multiscale interactions with the turbulent combustion process but the equally complex physical and chemical processes that drive the conversion of gas-phase fuel molecules into solid-phase particles. In particular, soot formation is highly sensitive to the gas-phase composition and temporal fluctuations in a turbulent background flow. In this work, a large-eddy simulation (LES) framework is used to study the soot formation in a model aircraft combustor with swirl-based fuel and air injection. Two different configurations are simulated: one with and one without secondary oxidation jets. Specific attention is paid to the LES numerical implementation such that the discrete solver minimizes the dissipation of kinetic energy. Simulation of the model combustor shows that the LES approach captures the two recirculation zones necessary for flame stabilization very accurately. Further, the model reasonably predicts the temperature profiles inside the combustor. The model also captures variation in soot volume fraction with global equivalence ratio. The structure of the soot field suggests that when secondary oxidation jets are present, the inner recirculation region becomes fuel lean, and soot generation is completely suppressed. Further, the soot field is highly intermittent suggesting that a very restrictive set of gas-phase conditions promotes soot generation.
Journal Articles
Article Type: Research-Article
J. Eng. Gas Turbines Power. December 2016, 138(12): 122805.
Paper No: GTP-13-1124
Published Online: August 9, 2016
Abstract
Common rail direct injection (CRDI) system is a modern variant of direct injection diesel engine featuring higher fuel injection pressure and flexible injection scheduling which involves two or more pulses. Unlike a conventional diesel engine, the CRDI engine provides simultaneous reduction of oxides of nitrogen and smoke with an injection schedule that has optimized start of injection, fuel quantity in each injection pulse, and dwell periods between them. In this paper, the development of a multizone phenomenological model used for predicting combustion and emission characteristics of multiple injection in CRDI diesel engine is presented. The multizone spray configuration with their temperature and composition histories predicted on phenomenological spray growth and mixing considerations helps accurate prediction of engine combustion and emission (nitric oxide and soot) characteristics. The model predictions of combustion and emissions for multiple injection are validated with measured values over a wide range of speed and load conditions. The multizone and the two-zone model are compared and the reasons for better comparisons for the multizone model with experimental data are also explored.
Journal Articles
Article Type: Research-Article
J. Eng. Gas Turbines Power. October 2016, 138(10): 102805.
Paper No: GTP-16-1042
Published Online: April 12, 2016
Abstract
Future projections in global transportation fuel use show a demand shift toward diesel and away from gasoline. At the same time, greenhouse gas regulations will drive higher vehicle fuel efficiency and lower well-to-wheel CO 2 production. Naphtha, a contributor to the gasoline stream and requiring less processing at the refinery level, is an attractive candidate to mitigate this demand shift while lowering the overall greenhouse gas impact. This study investigates the combustion and emissions performance of two naphtha fuels (Naphtha 1: RON59 and Naphtha 2: RON69) and one ultra-low sulfur diesel (ULSD) in a model year (MY) 2013, six-cylinder, heavy-duty diesel engine. Engine testing was focused on the heavy-duty supplemental emissions test (SET) “B” speed over a load sweep from 5 to 15 bar BMEP (brake-specific mean pressure). At each operating point, NO x sweeps were conducted over wide ranges. At 10–15 bar BMEP, mixing-controlled combustion dominates the engine combustion process. Under a compression ratio of 18.9, cylinder pressure and temperature at these load conditions are sufficiently high to suppress the reactivity difference between ULSD and the two naphtha fuels. As a result, the three test fuels showed similar ignition delay (ID). Nevertheless, naphtha fuels still exhibited notable soot reduction compared to ULSD. Under mixing-controlled combustion, this is likely due to their lower aromatic content and higher volatility. At 10 bar BMEP, Naphtha 1 generated less soot than Naphtha 2 since it contains less aromatics and is more volatile. When operated at light load, in a less reactive thermal environment, the lower reactivity naphtha fuels lead to longer IDs than ULSD. As a result, the soot benefit of naphtha fuels was enhanced. Utilizing the soot benefit of the naphtha fuels, engine-out NO x was calibrated from the production level of 3–4 g/hp-hr down to 2–2.5 g/hp-hr over the 12 nonidle SET steady-state modes. At this reduced NO x level, naphtha fuels were still able to maintain a soot advantage over ULSD and remain “soot-free” while achieving diesel-equivalent fuel efficiency. Finally, low-temperature combustion (LTC) operation (NO x ≤ 0.2 g/hp-hr and smoke ≤ 0.2 FSN) was achieved with both of the naphtha fuels at 5 bar BMEP through a late injection approach with high injection pressure. Under high exhaust gas recirculation (EGR) dilution, Naphtha 2 showed an appreciably longer ID than Naphtha 1, resulting in a soot reduction benefit.
Journal Articles
Article Type: Research-Article
J. Eng. Gas Turbines Power. October 2016, 138(10): 102802.
Paper No: GTP-16-1034
Published Online: April 12, 2016
Abstract
Dual-fuel combustion using port-injection of low reactivity fuel combined with direct injection (DI) of a higher reactivity fuel, otherwise known as reactivity controlled compression ignition (RCCI), has been shown as a method to achieve low-temperature combustion with moderate peak pressure rise rates, low engine-out soot and NO x emissions, and high indicated thermal efficiency. A key requirement for extending to high-load operation is moderating the reactivity of the premixed charge prior to the diesel injection. One way to accomplish this is to use a very low reactivity fuel such as natural gas. In this work, experimental testing was conducted on a 13 l multicylinder heavy-duty diesel engine modified to operate using RCCI combustion with port injection of natural gas and DI of diesel fuel. Engine testing was conducted at an engine speed of 1200 rpm over a wide variety of loads and injection conditions. The impact on dual-fuel engine performance and emissions with respect to varying the fuel injection parameters is quantified within this study. The injection strategies used in the work were found to affect the combustion process in similar ways to both conventional diesel combustion (CDC) and RCCI combustion for phasing control and emissions performance. As the load is increased, the port fuel injection (PFI) quantity was reduced to keep peak cylinder pressure (PCP) and maximum pressure rise rate (MPRR) under the imposed limits. Overall, the peak load using the new injection strategy was shown to reach 22 bar brake mean effective pressure (BMEP) with a peak brake thermal efficiency (BTE) of 47.6%.
Journal Articles
Article Type: Research-Article
J. Eng. Gas Turbines Power. September 2016, 138(9): 092803.
Paper No: GTP-16-1037
Published Online: March 22, 2016
Abstract
In this study, dynamic ϕ–T map analysis was applied to a reactivity controlled compression ignition (RCCI) engine fueled with natural gas (NG) and diesel. The combustion process of the engine was simulated by coupled kiva4-chemkin with a diesel oil surrogate (DOS) chemical mechanism. The ϕ–T maps were constructed by the mole fractions of soot and NO obtained from senkin and ϕ–T conditions from engine simulations. Five parameters, namely, NG fraction, first start of injection (SOI) timing, second SOI timing, second injection duration, and exhaust gas recirculation (EGR) rate, were varied in certain ranges individually, and the ϕ–T maps were compared and analyzed under various conditions. The results revealed how the five parameters would shift the ϕ–T conditions and influence the soot–NO contour. Among the factors, EGR rate could limit the highest temperature due to its dilute effect, hence maintaining RCCI combustion within low-temperature combustion (LTC) region. The second significant parameter is the premixed NG fraction. It could set the lowest temperature; moreover, the tendency of soot formation can be mitigated due to the lessened fuel impingement and the absence of C–C bond. Finally, the region of RCCI combustion was added to the commonly known ϕ–T map diagram.
Journal Articles
Article Type: Research-Article
J. Eng. Gas Turbines Power. April 2016, 138(4): 041506.
Paper No: GTP-15-1203
Published Online: October 28, 2015
Abstract
The present study investigated the effects of biodiesel blending under a wide range of intake oxygen concentration levels in a diesel engine. This study attempted to identify the lowest biodiesel blending rate that achieves acceptable levels of nitric oxides (NO x ), soot, and coefficient of variation in the indicated mean effective pressure (COV IMEP ). Biodiesel blending was to be minimized in order to reduce the fuel penalty associated with the biodiesels lower caloric value (LCV). Engine experiments were performed in a 1 l single-cylinder diesel engine at an engine speed of 1400 rev/min under a medium load condition. The blend rate and intake oxygen concentration were varied independently of each other at a constant intake pressure of 200 kPa. The biodiesel blend rate varied from 0% (B000) to 100% biodiesel (B100) at a 20% increment. The intake oxygen level was adjusted from 8% to 19% by volume (vol. %) in order to embrace both conventional and low-temperature combustion (LTC) operations. A fixed injection duration of 788 ms at a fuel rail pressure of 160 MPa exhibited a gross indicated mean effective pressure (IMEP) between 750 kPa and 910 kPa, depending on the intake oxygen concentration. The experimental results indicated that the intake oxygen level had to be below 10 vol. % to achieve the indicated specific NO x (ISNO x ) below 0.2 g/kW h with the B000 fuel. However, a substantial soot increase was exhibited at such a low intake oxygen level. Biodiesel blending reduced NO x until the blending rate reached 60% with reduced in-cylinder temperature due to lower total energy release. As a result, 60% biodiesel-blended diesel (B060) achieved NO x , soot, and COV IMEP of 0.2 g/kW h, 0.37 filter smoke number (FSN), and 0.5, respectively, at an intake oxygen concentration of 14 vol. %. The corresponding indicated thermal efficiency was 43.2%.
Journal Articles
Article Type: Research-Article
J. Eng. Gas Turbines Power. October 2015, 137(10): 101509.
Paper No: GTP-15-1072
Published Online: October 1, 2015
Abstract
Measures exist to adjust tailpipe NOx emissions to assigned values, for example cooled exhaust gas recirculation (EGR) or a selective catalytic reduction (SCR) catalyst in conjunction with urea. The situation is quite different with soot when use of a trap is not feasible for reasons of cost, space requirements and maintenance. Due to the highly complex soot formation and oxidation process, soot emissions cannot be targeted as easily as NOx. So, how can soot be kept within the limits? In principle, soot can be controlled by allocating sufficient oxygen and establishing good mixing conditions with vaporized fuel. The most effective measures target the injection system, e.g., increasing injection pressure, applying multiple injections, optimizing nozzle geometry. To investigate the impact of very high injection pressure on soot, an advanced injection system with rail pressure capability up to 3000 bar and a Bosch injector was installed at the Large Engines Competence Center (LEC) in Graz. Full load and part load operating points at constant speed and in accordance with the propeller law were investigated at the test bed to quantify the impact of high injection pressure on soot emissions. Test runs were conducted with both SCR and EGR while varying injection timing and air–fuel ratios. Use of a statistical method, design of experiments (DOE), helped reduce the number of tests. Optical investigations of the spray and combustion were conducted. The goal was to obtain soot concentration history traces with the two color method in order to better understand how soot originates and to be able to calibrate 3D CFD (computational fluid dynamics) FIRE spray models for use with injection pressures of up to 3000 bar. Very low soot emissions can be achieved using high pressure injection, even when EGR is applied. DOE results provide a clear picture of the relationships between the parameters and can be used to optimize set values for the whole speed and load range. A reliable spray break up model can be used in further 3D CFD simulation to investigate how to reduce soot emissions.
Journal Articles
Article Type: Research-Article
J. Eng. Gas Turbines Power. January 2016, 138(1): 011505.
Paper No: GTP-15-1245
Published Online: August 25, 2015
Abstract
Nitrogen oxides (NO x ) emissions from diesel engines can profoundly be suppressed if a portion of exhaust gases is cooled through a heat exchanger known as exhaust gas recirculation (EGR) cooler and returned to the intake of the combustion chamber. One major hurdle though for the efficient performance of EGR coolers is the deposition of various species, i.e., particulate matter (PM) on the surface of EGR coolers. In this study, a model is proposed for the deposition and removal of soot particles carried by the exhaust gases in a tubular cooler. The model takes thermophoresis into account as the primary deposition mechanism. Several removal mechanisms of incident particle impact, shear force, and rolling moment (RM) have rigorously been examined to obtain the critical velocity that is the maximum velocity at which the particulate fouling can profoundly be suppressed. The results show that the dominant removal mechanism changes from one to another based particle size and gas velocity. Based on particle mass and energy conservation equations, a model for the fouling resistance has also been developed which shows satisfactory agreement when compared with the fouling experimental results.