Abstract

Very high cycle fatigue (VHCF) data and experiments, 10^7-10^9 cycles to failure, has traditionally been both a cumbersome and costly task to perform. However, characterizing VHCF behavior of material systems are critical for the design and sustainability of turbine engines as outlined in the turbine engine structural integrity program (ENSIP). With recent advancements, ultrasonic fatigue test systems have become increasingly available to generate VHCF fatigue data. A primary consideration for ultrasonic fatigue testing is the frequency of loading, the resulting thermal evolution, and its effect on fatigue life. To mitigate the heat generation within the specimen during experiments, cooling air is directed to the specimen and cyclic loading is performed by selecting an appropriate test frequency or defining a duty cycle rather than continuously subjected to fatigue. However, standardization of experimental test procedures remains ongoing and continues to be developed. In this study a Shimadzu USF-1000A ultrasonic fatigue test system is used to characterized VHCF behavior of Ti 6Al-4V to understand the effect of duty cycle and thermal evolution on fatigue life for ultrasonic fatigue testing. Titanium 6Al-4V test specimens are subjected to fully reversed axial fatigue at 20kHz exciting resonance in an axial mode to better characterize the experimental process. Heat generation is monitored in-situ via a single-point optical pyrometer and in-situ mechanical and thermal data is collected and compared to standardized servo-hydraulic fatigue test data performed in this study as well as from data found in the literature.

This content is only available via PDF.
You do not currently have access to this content.