Due to the reciprocating engine, a pulsating flow occurs in the turbine turbocharger, which experiences conditions far from the continuous flow scenario. In this work, the effects of the characteristics of the mass flow pulse, parameterized through amplitude, frequency and temporal gradient, are decoupled and studied via unsteady Computational Fluid Dynamics calculations under on-engine operating conditions. Firstly, the model is validated based on comparisons with experimental data in steady flow conditions. Then, the effect of each parameter on exergy budget is assessed by considering a +/-10% variation with respect to a baseline pulse. The other factors defining the operating conditions (e.g. mass flow, shaft speed and inflow exergy) are kept the same as the baseline. The adopted approach enables to completely isolate the effects of each parameter in contrast with previous literature studies. Based on the results observed, pulse amplitude is identified as the primary parameter affecting the hot-side system response in terms of turbine performance, heat transfer and entropy generation, while frequency and temporal gradient show a smaller influence compared to it. As the pulse amplitude increases, the turbine work is reported to improve up to 9.4%. Smaller variations are observed for the frequency and temporal gradient analysis. With a 10% increase of the pulse frequency the turbine work is registered to improve by 5.0%, while the same percentage reduction of the temporal gradient leads to an increase of turbine work equal to 3.6%.

This content is only available via PDF.
You do not currently have access to this content.