Abstract

Centrifugal compressors can suffer from rotordynamic instability. While individual components (e.g., seals, shrouds) have been previously investigated, an integrated experimental or analytical study at the compressor system level is scarce. For the first time, non-axisymmetric pressure distributions in a statically eccentric shrouded centrifugal compressor with eye-labyrinth seals have been measured for various eccentricities. From the pressure measurements, direct and cross-coupled stiffness coefficients have been determined. Thus, the contributions of the pressure perturbations in the shroud cavity and labyrinth seals have been simultaneously investigated. The cross-coupled stiffness coefficients in the shroud and labyrinth seals are both positive and one order of magnitude larger than the direct stiffness coefficients. Furthermore, in the tested compressor, contrary to the common assumption, the cross-coupled stiffness in the shroud is 2.5 times larger than that in the labyrinth seals. Thus, not only eye-labyrinth seals but also shrouds need to be considered in rotordynamic analysis.

References

References
1.
Vance
,
J.
,
Zeidan
,
F.
, and
Murphy
,
B.
,
2010
,
Machinery Vibration and Rotordynamics
,
Wiley
,
Hoboken, NJ
.
2.
Benckert
,
H.
, and
Wachter
,
J.
,
1980
, “
Flow Induced Spring Coefficients of Labyrinth Seals for Application in Rotor Dynamics
,”
Proceedings of Rotordynamic Instability Problems in High-Performance Turbomachinery
, College Station, TX, May 12–14, pp.
189
212
.
3.
Song
,
S.
, and
Martinez-Sanchez
,
M.
,
1997
, “
Rotordynamic Forces Due to Turbine Tip Leakage—Part II: Radius Scale Effects and Experimental Verification
,”
ASME J. Turbomach.
,
119
(
4
), pp.
704
713
.10.1115/1.2841180
4.
Storace
,
A. F.
,
Wisler
,
D. C.
,
Shin
,
H. W.
,
Beacher
,
B. F.
,
Ehrich
,
F. F.
,
Spakovszky
,
Z. S.
,
Martinez-Sanchez
,
M.
, and
Song
,
S. J.
,
2000
, “
Unsteady Flow and Whirl-Inducing Forces in Axial-Flow Compressors—Part I: Experiment
,”
ASME J. Turbomach.
,
123
(
3
), pp.
433
445
.10.1115/1.1378299
5.
Childs
,
D. W.
, and
Scharrer
,
J. K.
,
1986
, “
Experimental Rotordynamic Coefficient Results for Teeth-on-Rotor and Teeth-on-Stator Labyrinth Gas Seals
,”
ASME J. Eng. Gas Turbines Power
,
108
(
4
), pp.
599
604
.10.1115/1.3239953
6.
Wagner
,
N. G.
,
Steff
,
K.
,
Gausmann
,
R.
, and
Schmidt
,
M.
,
2009
, “
Investigations on the Dynamic Coefficients of Impeller Eye Labyrinth Seals
,”
Proceedings of the 38th Turbomachinery Symposium
, Houston, TX, Sept. 14–17, pp.
53
69
.
7.
Millsaps
,
K. T.
, and
Martinez-Sanchez
,
M.
,
1994
, “
Dynamic Forces From Single Gland Labyrinth Seals—Part 1: Ideal and Viscous Decomposition
,”
ASME J. Turbomach.
,
116
(
4
), pp.
686
693
.10.1115/1.2929461
8.
Childs
,
D. W.
,
1993
,
Turbomachinery Rotordynamics: Phenomena, Modeling, and Analysis
,
Wiley
, New York.
9.
Guinzburg
,
A.
,
Brennen
,
C. E.
,
Acosta
,
A. J.
, and
Caughey
,
T. K.
,
1993
, “
The Effect of Inlet Swirl on the Rotordynamic Shroud Forces in a Centrifugal Pump
,”
ASME J. Eng. Gas Turbines Power
,
115
(
2
), pp.
287
293
.10.1115/1.2906707
10.
Uy
,
R. V.
, and
Brennen
,
C. E.
,
1999
, “
Experimental Measurements of Rotordynamic Forces Caused by Front Shroud Pump Leakage
,”
ASME J. Fluids Eng.
,
121
(
3
), pp.
633
637
.10.1115/1.2823516
11.
Bolleter
,
U.
,
Wyss
,
A.
,
Welte
,
I.
, and
Stürchler
,
R.
,
1987
, “
Measurement of Hydrodynamic Interaction Matrices of Boiler Feed Pump Impellers
,”
ASME J. Vib. Acoust.
,
109
(
2
), pp.
144
151
.10.1115/1.3269406
12.
Jery
,
B.
,
1987
, “
Experimental Study of Unsteady Hydrodynamic Force Matrices on Whirling Centrifugal Pump Impellers
,” Ph.D. dissertation, California Institute of Technology, Pasadena, CA.
13.
Uchiumi
,
M.
,
Nagao
,
N.
,
Yoshida
,
Y.
, and
Eguchi
,
M.
,
2012
, “
Comparison of Rotordynamic Fluid Forces Between Closed Impeller and Open Impeller
,”
ASME
Paper No. FEDSM2012-72348.10.1115/FEDSM2012-72348
14.
Wyssmann
,
H. R.
,
Pham
,
T. C.
, and
Jenny
,
R. J.
,
1984
, “
Prediction of Stiffness and Damping Coefficients for Centrifugal Compressor Labyrinth Seals
,”
ASME J. Eng. Gas Turbines Power
,
106
(
4
), pp.
920
926
.10.1115/1.3239659
15.
Gupta
,
M. K.
, and
Childs
,
D. W.
,
2010
, “
Rotordynamic Stability Predictions for Centrifugal Compressors Using a Bulk-Flow Model to Predict Impeller Shroud Force and Moment Coefficients
,”
ASME J. Eng. Gas Turbines Power
,
132
(
9
), p.
091402
.10.1115/1.2720519
16.
Moore
,
J. J.
, and
Ransom
,
D. L.
,
2010
, “
Centrifugal Compressor Stability Prediction Using a New Physics Based Approach
,”
ASME J. Eng. Gas Turbines Power
,
132
(
8
), p.
082402
.10.1115/1.4000113
17.
Zhang
,
D.
,
Lee
,
C.
, and
Cave
,
M.
,
2012
, “
A CFD Study on the Dynamic Coefficients of Labyrinth Seals
,”
ASME
Paper No. GT2012-68292.10.1115/GT2012-68292
18.
Song
,
J.
, and
Song
,
S. J.
,
2019
, “
Non-Axisymmetric Flows and Rotordynamic Forces in an Eccentric Shrouded Centrifugal Compressor—Part 2: Analysis
,”
ASME J. Eng. Gas Turbines Power
, accepted.10.1115/1.4044875
19.
Cha
,
B.-J.
,
Lim
,
B.
,
Yang
,
S.
, and
Lee
,
D.
,
2001
, “
Experimental Study on the Effect of Tip Clearance of a Centrifugal Compressor
,”
KSFM J. Fluid Mach.
,
4
(
1
), pp.
30
37
.
20.
Cumpsty
,
N. A.
,
2004
,
Compressor Aerodynamics
,
Krieger Publishing
,
Malabar, FL
.
21.
Song
,
J.
,
2018
, “
Non-Axisymmetric Flow in a Shrouded Radial Compressor
,” Ph.D. dissertation, Seoul National University, Seoul, South Korea.
22.
Benckert
,
H.
,
1980
, “
Strömungsbedingte Federkennwerte in Labyrinthdichtungen
,” Ph.D. dissertation, University of Stuttgart, Stuttgart, Germany.
23.
Moin
,
P.
,
2010
,
Fundamentals of Engineering Numerical Analysis
,
Cambridge University Press
,
Cambridge, UK
.
24.
Coleman
,
H. W.
, and
Glenn Steele
,
W.
,
2009
,
Experimentation, Validation, and Uncertainty Analysis for Engineers
,
3rd ed.
,
Wiley
,
Hoboken, NJ
.
You do not currently have access to this content.