Abstract

The growing share of wind and solar power in the total energy mix has caused severe problems in balancing the electrical power production. Consequently, in the future, all fossil fuel-based electricity generation will need to be run on a completely flexible basis. Micro Gas Turbines (mGTs) constitutes a mature technology which can offer such flexibility. Even though their greenhouse gas emissions are already very low, stringent carbon reduction targets will require them to be completely carbon neutral: this constraint implies the adoption of post-combustion Carbon Capture (CC) on these energy systems. Despite this attractive solution, an in-depth study along with a robust optimization of this system has not yet been carried out. Hence, in this paper, a typical mGT with exhaust gas recirculation has been coupled with an amine-based CC plant and simulated using the software Aspen Plus A rigorous rate-based simulation of the CO2 absorption and desorption in the CC unit offers an accurate prediction; however, its time complexity and convergence difficulty are severe limitations for a stochastic optimization. Therefore, a surrogate-based optimization approach has been used, which makes use of a Gaussian Process Regression (GPR) model, trained using the Aspen Plus data, to quickly find operating points of the plant at a very low computational cost. Using the validated surrogate model, a stochastic optimization has been carried out. As a general result, the analyzed power plant proves to be intrinsically very robust, even when the input variables are affected by strong uncertainties.

This content is only available via PDF.

Article PDF first page preview

Article PDF first page preview
You do not currently have access to this content.