Existing crack growth laws which consider time and temperature effects are examined. Based on phenomenological observations, as well as mechanistic considerations, one of these laws is modified in order to provide an improved, universal elevated temperature crack growth law. It is assumed that there are essentially three processes through which crack growth rates are affected: decrease in strength and modulus with temperature, oxidation damage at the crack tip and creep damage at the crack tip. The rate controlling mechanism(s) which may be associated with each of these processes are discussed. The type of experiments which are needed for the determination of material constant(s) that describe the contribution from each process are outlined. The modified crack growth law, when applied to publish data on HS-188 alloy, results in a prediction of the crack growth rates within a factor of 2.5, in the temperature range of 873–1144 K and at cycle frequencies ranging from 0.01 to 10 Hz.

This content is only available via PDF.
You do not currently have access to this content.