The performance of a single-stage, axial-flow turbomachine was studied experimentally at low Reynolds numbers. The study was made with a turbomachine modeled from a large jet-engine type of axial-flow compressor. Low Reynolds numbers were obtained by using a mixture of glycerine and water as the working fluid. The overall performance was determined over a range of Reynolds numbers RT (based on rotor-tip speed and rotor chord) from 2000 to 150,000. The flow rate at each Reynolds number was varied from near shutoff to the maximum permitted by the turbomachine-tunnel systems. Blade-row characteristics were studied by means of quantitative flow surveys before and after each blade row, and by means of extensive flow-visualization experiments within each blade row. The investigation established that sudden or critical changes in performance do not occur in the type of machine tested, between RT of 150,000 and 20,000. Below 20,000 the performance deteriorated more rapidly. A relatively sharp change in performance occurred between RT of 20,000 and 10,000. The results clarified many of the viscous flow details in each blade row which are associated with the deterioration of performance. These effects were very pronounced at RT of 4000 and below. Consequently, a considerable part of the paper is concerned with results obtained at these lower Reynolds numbers. From the point of view of a designer, information is presented in regard to overall performance, guide-vane turning, and guide-vane and stator total-pressure losses, all as functions of Reynolds number. These results are expected to be indicative of performance in turbomachines similar to the one tested here. Other details are concerned with problems such as wall boundary layers, flow reversal at low flow coefficients, lip-clearance flow, flow patterns near shutoff, and flow comparisons in stators with rotating and stationary hubs.

This content is only available via PDF.
You do not currently have access to this content.