A study was made to determine effects of trailing-edge geometry on the vortex-induced vibrations of a model blade designed to simulate the conditions at the trailing edge of a hydraulic-turbine blade. For the type of trailing-edge flow encountered, characterized by a thick boundary layer relative to the blade thickness, the vortex-shedding frequency could not be represented by any modification of the Strouhal formula. The amplitude of the induced vibrations increased with the strength of a vortex in the von Karman vortex street of the wake; one exception was provided by a grooved edge, which is discussed in some detail. For a particular approach velocity, the vortex strength is primarily a function of the ratio of distance between separation points to boundary-layer thickness, the degree of “shielding” between regions of vortex growth, and frequency of vortex shedding.

This content is only available via PDF.
You do not currently have access to this content.