Abstract

Pumped thermal energy storage (PTES) offers a cost-effective means to store electrical energy for long duration by utilizing a heat pump cycle to transfer thermal energy from a low temperature reservoir (LTR) to a high temperature reservoir (HTR). A key component of the PTES system is the heat pump compressor, which represents a significant driver to the cost, performance, and operating characteristics of the PTES system. At the power rating of the charging process (>100 MW), traditional compressor scaling charts indicate that the operating conditions needed would be best served by a multistage axial compressor. While frame gas turbine compressors at these power ratings exist and operate at higher pressure ratios than needed for the CO2 PTES system, the inlet pressure and fluid density of this application exceeds experience values. The conceptual design of a large-scale CO2 axial compressor was completed, including mean-line estimates of the compressor performance at full power conditions. At steady-state, full power operation, the isentropic efficiency and mechanical efficiency of the compressor have significant impact on the cycle design and round trip efficiency of the PTES system. The results of the conceptual design were used to refine the PTES cycle design, and updated operating conditions provided for further aero design optimization. An important characteristic of the PTES system is its ability to charge at variable rate, which provides significant challenges on compressor operability, especially for a compressor that will be coupled to a fixed-speed synchronous motor. Cycle studies of variable charging rate processes have been conducted, and the impact of compressor operating map characteristics explored. Based on initial modeling studies, single compressor operation can be achieved down to at least 50% of rated power, with further reductions possible depending on the characteristics of the compressor map speedlines.

References

1.
LDES Council
,
2021
, “
Net-Zero Power—Long Duration Energy Storage for a Renewable Grid
,” McKinsey and Company, Brussels, Belgium, Technical Report.https://www.ldescouncil.com/assets/pdf/LDES-brochure-F3-HighRes.pdf
2.
Rabi
,
A. M.
,
Radulovic
,
J.
, and
Buick
,
J. M.
,
2023
, “
Pumped Thermal Energy Storage Technology (PTES): Review
,”
Thermo
,
3
(
3
), pp.
396
411
.10.3390/thermo3030024
3.
Jaroslav
,
H.
,
Mehmet
,
M.
,
Lilian
,
K.
, and
Christian
,
O.
,
2011
, “
Thermoelectric Energy Storage Based on Transcritical CO2 Cycle
,”
Supercritical CO2 Power Cycle Symposium
,
Boulder, CO
, May 24–25, p.
5
.https://www.scribd.com/document/364602027/Thermoelectric-Energy-Storage-Based-on-Transcritical-Co2-Cycle
4.
Wright
,
S.
,
Z'Graggen
,
A.
, and
Hemrle
,
J.
,
2013
, “
Control of a Supercritical CO2 Electro-Thermal Energy Storage System
,”
ASME
Paper No. GT2013-95326.10.1115/GT2013-95326
5.
Morandin
,
M.
,
Mercangöz
,
M.
,
Hemrle
,
J.
,
Maréchal
,
F.
, and
Favrat
,
D.
,
2013
, “
Thermoeconomic Design Optimization of a Thermo-Electric Energy Storage System Based on Transcritical CO2 Cycles
,”
Energy
,
58
, pp.
571
587
.10.1016/j.energy.2013.05.038
6.
Sanz Garcia
,
L.
,
Jacquemoud
,
E.
, and
Jenny
,
P.
,
2019
, “
Thermo-Economic Heat Exchanger Optimization for Electro-Thermal Energy Storage Based on Transcritical CO2 Cycles
,”
Proceedings of the 3rd European Supercritical CO2 Conference
,
Paris, France
, Sept. 19–20, Paper No. 2019-sCO2.eu-151.10.17185/duepublico/48917
7.
Lorenz
,
H.
,
1895
, “
Die Ermittelung Der Grenzwerte Der Thermodynamischen Energieumwandlung
,”
Z. Gesammte Kälteindustrie
,
2
(
8
), p.
27
.
8.
Held
,
T.
,
2023
, “
Low–Cost, Long Duration Electrical Energy Storage Using a CO2–Based Pumped Thermal Energy Storage
,” Echogen Power Systems, Award Contract No. DE-AR-0000996.
9.
Brown
,
R. N.
,
1997
,
Compressors: Selection and Sizing
,
Gulf Professional Publishing
, Houston, TX.
10.
Balje
,
O. E.
,
1962
, “
A Study on Design Criteria and Matching of Turbomachines: Part A–Similarity Relations and Design Criteria of Turbines
,”
J. Eng. Power
,
84
(
1
), pp.
83
102
.10.1115/1.3673386
11.
Musardo
,
A.
,
Patel
,
V.
,
Giovani
,
G.
,
Pelella
,
M.
,
Weatherwax
,
M.
, and
Cipriani
,
S.
,
2012
, “
CO2 Compression at World's Largest Carbon Dioxide Injection Project
,”
Proceedings of the Fortieth Turbomachinery Symposium
, Houston, TX, Sept. 24–27, pp.
1
20
.https://hdl.handle.net/1969.1/162984
12.
Ghimire
,
S.
,
Ha
,
M.
,
Holder
,
J.
,
Turner
,
M. G.
,
Kang
,
J.
,
Morris
,
S. C.
,
Sedlacko
,
K.
, and
Held
,
T. J.
,
2024
, “
Numerical and Experimental Comparison of a Single Stage Axial S-CO2 Compressor
,”
ASME
Paper No. GT2024-129128.10.1115/GT2024-129128
13.
Kang
,
J.-S.
,
Vorobiev
,
A.
,
Cameron
,
J. D.
,
Morris
,
S. C.
,
Turner
,
M. G.
,
Sedlacko
,
K.
,
Miller
,
J. D.
, and
Held
,
T. J.
,
2024
, “
Experimental Study of the Real Gas Effects of CO2 on the Aerodynamic Performance Characteristics of a 1.5-Stage Axial Compressor
,”
ASME
Paper No. GT2024-129572.10.1115/GT2024-129572
14.
Wells
,
K.
, and
Turner
,
M. G.
,
2021
, “
Open Source Axial Compressor Mean-Line Design Tool for Supercritical Carbon Dioxide
,”
ASME
Paper No. GT2021-59961.10.1115/GT2021-59961
15.
Lemmon
,
E. W.
,
Bell
,
I. H.
,
Huber
,
M. L.
, and
McLinden
,
M. O.
,
2018
, “
NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0
,” National Institute of Standards and Technology, Gaithersburg, MD.
16.
Span
,
R.
, and
Wagner
,
W.
,
1996
, “
A New Equation of State for Carbon Dioxide Covering the Fluid Region From the Triple-Point Temperature to 1100 K at Pressures up to 800 MPa
,”
J. Phys. Chem. Ref. Data
,
25
(
6
), pp.
1509
1596
.10.1063/1.555991
17.
Kang
,
J.
,
Vorobiev
,
A.
,
Cameron
,
J.
,
Morris
,
S.
,
Wackerly
,
R.
,
Sedlacko
,
K.
,
Miller
,
J.
, and
Held
,
T.
,
2021
, “
10 MW-Class sCO2 Compressor Test Facility at University of Notre Dame
,”
Proceedings of the 4th European Supercritical CO2 Conference
, Online, Mar. 23–24, p.
316
.https://duepublico2.uni-due.de/servlets/MCRFileNodeServlet/duepublico_derivate_00073835/144_Kang_et_al_10MW-Class_sCO2.pdf
18.
Ha
,
M.
,
Holder
,
J.
,
Ghimire
,
S.
,
Ringheisen
,
A.
, and
Turner
,
M. G.
,
2022
, “
Detailed Design and Optimization of the First Stage of an Axial Supercritical CO2 Compressor
,”
ASME
Paper No. GT2022-82590.10.1115/GT2022-82590
19.
U.S. Department of Energy, Office of Clean Energy Demonstrations
,
2023
, “
Long-Duration Energy Storage Demonstrations Projects Selections for Award Negotiations
,” U.S. Department of Energy, Office of Clean Energy Demonstrations, Washington, DC, accessed Oct. 1, 2023, https://www.energy.gov/oced/long-duration-energy-storage-demonstrations-projects-selected-and-awarded-projects#polar
20.
Greitzer
,
E. M.
,
Bonnefoy
,
P. A.
,
Hall
,
D. K.
,
Hansman
,
R. J.
,
Hileman
,
J. I.
,
Liebeck
,
R. H.
,
Lovegren
,
J.
, et al.,
2010
, “
N+3 Aircraft Concept Designs and Trade Studies, Final Report
,” NASA, Cleveland, OH, Technical Report No.
NASA/CR–2010-216794/VOL2
.https://ntrs.nasa.gov/api/citations/20100042401/downloads/20100042401.pdf
You do not currently have access to this content.