Abstract

The continuous improvement of high potential repair technologies is an essential driver for cost-effective and sustainable aviation. To withstand extreme forces and temperatures, the turbine section of aircraft engines is made from Nickel-based superalloys. This class of materials routinely develops cracks and geometrical deviations in service, which require a brazing repair, thus making brazing an indispensable key technology. This study seeks to improve brazing properties on Nickel-based superalloys for aircraft applications. Facilitated by materials simulation, a novel alloying strategy is outlined to design the braze alloy chemistry. The design criteria are established on the optimization of major microstructural properties influencing the mechanical properties known for repair brazed joints. The proposed design criteria were applied to the development of two new braze alloys. The new alloy design approach is validated experimentally by using the developed alloys. Mechanical properties of brazed samples made from Nickel-based superalloys were investigated at a service equivalent temperature of 871 °C. Results indicate that the ultimate tensile strength at 871 °C is 20.5% higher than that published for legacy braze alloys. This study provides a basis for the development of repair technologies applicable to further superalloys.

References

1.
Duvall
,
D. S.
,
Owczarski
,
W. A.
, and
Paulonis
,
D. F.
,
1974
, “
TLP Bonding: A New Method for Joining Heat Resistant Alloys
,”
Weld J.
, 53(4), pp.
203
214
.https://inis.iaea.org/search/search.aspx?orig_q=RN:5140994
2.
Suzuki
,
A.
,
Schoonover
,
J.
,
Shen
,
C.
, and
Wark
,
D.
,
2016
, “
Single-Crystal Superalloy Joining
,”
Superalloys 2016: Proceedings of the 13th International Symposium on Superalloys, TMS (the Minerals, Metals & Materials Society)
, Seven Springs, PA, Sept. 11–15, pp.
333
340
.https://www.tms.org/Superalloys/10.7449/Superalloys/2016/Superalloys_2016_333_340.pdf
3.
Demo
,
W. A.
,
Ferrigno
,
S.
,
Budinger
,
D.
, and
Huron
,
E.
,
2000
, “
Improving Repair Quality of Turbine Nozzles Using SA650 Braze Alloy
,”
Superalloys 2000, TMS (the Minerals, Metals & Materials Society)
, Seven Springs, PA, Sept. 17–21, pp.
713
718
.https://www.tms.org/Superalloys/10.7449/2000/Superalloys_2000_713_720.pdf
4.
Aeroengine Safety, Institute of Thermal Turbomachinery and Machine Dynamics, Granz University of Technology
,
2022
, “
Repair Brazings
,” Graz University of Technology, Graz, Austria, accessed Oct. 19, 2023, https://aeroenginesafety.tugraz.at/doku.php?id=21:212:2122:2122
5.
Huang
,
X.
, and
Miglietti
,
W.
,
2012
, “
Wide Gap Braze Repair of Gas Turbine Blades and Vanes - A Review
,”
ASME J. Eng. Gas Turbines Power
,
134
(
1
), p.
010801
.10.1115/1.4003962
6.
Hawk
,
C.
,
Liu
,
S.
, and
Kottilingam
,
S.
,
2017
, “
Effect of Processing Parameters on the Microstructure and Mechanical Properties of Wide-Gap Braze Repairs on Nickel-Superalloy René 108
,”
Weld. World
,
61
(
2
), pp.
391
404
.10.1007/s40194-016-0420-y
7.
MatCalc Software
, “
The Scientific Tool Box
,” MatCalc Engineering, Vienna, Austria, accessed Jan. 2, 2023, http://www.matcalc.at
8.
Kozeschnik
,
E.
,
2013
,
Modeling Solid-State Precipitation
,
Momentum Press
,
New York
, p.
308
.
9.
Engström
,
A.
,
Höglund
,
L.
, and
Ågren
,
J.
,
1994
, “
Computer Simulation of Diffusion in Multiphase Systems
,”
Metall. Mater. Trans. A
,
25
(
6
), pp.
1127
1134
.10.1007/BF02652288
10.
Zamberger
,
S.
,
Lang
,
P.
,
Klösch
,
G.
,
Klarner
,
J.
, and
Kozeschnik
,
E.
,
2016
, “
Long-Range Diffusion of H in the Presence of Traps in a Microalloyed Steel
,”
Comput. Mater. Sci.
,
113
, pp.
266
274
.10.1016/j.commatsci.2015.11.014
11.
Svoboda
,
J.
,
Shan
,
Y. V.
,
Kozeschnik
,
E.
, and
Fischer
,
F. D.
,
2014
, “
Determination of Depths of Multiple Traps for Interstitials and Their Influence on Diffusion Kinetics
,”
Modell. Simul. Mater. Sci. Eng.
,
22
(
6
), p.
065015
.10.1088/0965-0393/22/6/065015
12.
Zügner
,
D.
,
Zamberger
,
S.
,
Yigit
,
N.
,
Rupprechter
,
G.
, and
Kozeschnik
,
E.
,
2020
, “
Thermal Desorption Spectra of H in an Fe-C-Nb Alloy Evaluated by Diffusion Simulation
,”
Steel Res. Int.
,
91
(
12
), p.
2000240
.10.1002/srin.202000240
13.
Alinaghian
,
H.
,
Farzadi
,
A.
,
Marashi
,
P.
, and
Pouranvari
,
M.
,
2020
, “
Wide Gap Brazing of Inconel 738 LC Nickel-Based Superalloy: Metallurgical and Mechanical Characteristics
,”
Metall. Mater. Trans. A
,
51
(
12
), pp.
6283
6293
.10.1007/s11661-020-06027-1
14.
Wang
,
D. K.
,
Wu
,
H. C.
,
Shiue
,
R.
, and
Chen
,
C.
,
2008
, “
Vacuum Repair Brazing of the Inconel 939 Superalloy
,”
Adv. Mater. Res.
,
51
, pp.
71
78
.10.4028/www.scientific.net/AMR.51.71
15.
Kim
,
Y. H.
, and
Kwun
,
S. I.
,
2006
, “
Microstructure and Mechanical Properties of the Wide-gap Region Brazed With Various Powder Mixing Ratios of Additive to Filler Metal Powders
,”
Solid State Phenom.
, 118, pp.
479
484
.10.4028/www.scientific.net/SSP.118.479
16.
Su
,
C. Y.
,
Chou
,
C. P.
,
Wu
,
B. C.
, and
Lih
,
W. C.
,
1999
, “
Microstructural Characterisation of Transient Liquid Phase Zone of Activated Diffusion Brazed Nickel Base Superalloy
,”
Mater. Sci. Technol.
,
15
(
3
), pp.
316
322
.10.1179/026708399101505743
17.
DSM-0243.2
,
2022
, “
Amdry™ Activated Diffusion Braze Alloys
,”
OC Oerlikon Corporation AG
,
Pfäffikon
, Switzerland, accessed Oct. 19, 2023, https://www.metcojoiningcladding.com/ecoma/files/DSM-0243.3_Amdry_ADB_Alloys.pdf
18.
Schnell
,
A.
,
Stankowski
,
A.
, and
deMarcos
,
E.
,
2006
, “
A Study of the Diffusion Brazing Process Applied to the Single Crystal Superalloy CMSX-4
,”
ASME
Paper No. GT2006-90492.10.1115/GT2006-90492
19.
Portnoi
,
K. I.
,
Romashov
,
V. M.
,
Chubarov
,
V. M.
,
Levinskaya
,
M. K.
, and
Salibekov
,
S. E.
,
1967
, “
Phase Diagram of the System Nickel-Boron
,”
Powder Metall. Met. Ceram.
,
6
(
2
), pp.
99
103
.10.1007/BF00775639
20.
Svoboda
,
J.
,
Riedel
,
H.
, and
Gaebel
,
R.
,
1996
, “
A Model for Liquid Phase Sintering
,”
Acta Mater
,
44
(
8
), pp.
3215
3226
.10.1016/1359-6454(95)00440-8
21.
Bobzin
,
K.
,
Öte
,
M.
,
Wiesner
,
S.
,
Krappitz
,
H.
, and
Uddin
,
S. M.
,
2019
, “
Influence of Superalloy Additives on the Melting Behavior of Green Tapes for Gas Turbine Repair Brazing
,” Brazing, High Temperature Brazing and Diffusion Bonding, LÖT 2019, DVS 353, pp.
77
83
.
22.
Reed
,
R. C.
,
Mottura
,
A.
, and
Crudden
,
D. J.
,
2016
, “
Alloys-by-Design: Towards Optimization of Compositions of Nickel-Based Superalloys
,”
Superalloys 2016: Proceedings of the 13th International Symposium of Superalloys
, Seven Springs, PA, Sept. 11–15, pp.
13
23
.10.1002/9781119075646.ch2
23.
Dinkel
,
M.
,
2010
, “
Mikrostruktur Und Mechanische Eigenschaften Einkristalliner Lötungen Von Nickelbasissuperlegierungen
,” Doctoral thesis,
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)
,
Erlangen, Germany
.
24.
Dinkel
,
M. K.
,
Heinz
,
P.
,
Pyczak
,
F.
,
Volek
,
A.
,
Ott
,
M.
,
Affeldt
,
E.
,
Vossberg
,
A.
,
Göken
,
M.
, and
Singer
,
R. F.
,
2008
, “
New Boron and Silicon Free Single Crystal-Diffusion Brazing Alloys
,”
Superalloys 2008
, Seven Springs, PA, Sept. 14–18, pp.
211
220
.https://www.tms.org/superalloys/10.7449/2008/Superalloys_2008_211_220.pdf
25.
Murray
,
J.
,
1987
,
Phase Diagrams of Binary Titanium Alloys
,
American Society for Metals International
,
Metals Park, OH
, p.
59
.
26.
Stein
,
F.
,
Merali
,
M.
, and
Watermeyer
,
P.
,
2019
, “
The Co–Ti System Revisited: About the Cubic-to-Hexagonal Laves Phase Transformation and Other Controversial Features of the Phase Diagram
,”
Calphad
,
67
, p.
101681
.10.1016/j.calphad.2019.101681
27.
Hardwick
,
L.
,
Rodgers
,
P.
,
Pickering
,
E.
, and
Goodall
,
R.
,
2021
, “
Development of a Novel Ni-Based Multi-Principal Element Alloy Filler Metal, Using an Alternative Melting Point Depressant
,”
Metall. Mater. Trans. A
,
52
(
6
), pp.
2534
2548
.10.1007/s11661-021-06246-0
28.
Tuah-Poku
,
I.
,
Dollar
,
M.
, and
Massalski
,
T. B.
,
1988
, “
A Study of the Transient Liquid Phase Bonding Process Applied to a Ag/Cu/Ag Sandwich Joint
,”
Metall. Trans. A
,
19
(
3
), pp.
675
686
.10.1007/BF02649282
You do not currently have access to this content.