Abstract

Hydrogen and ammonia represent two carbon-free fuel sources that could be used in place of current fossil energy sources in combustion systems. To develop optimized ammonia combustion systems, validated modeling tools are needed. In the open literature, it has been shown that the complex chemistry associated with fuel-bound nitrogen contained in ammonia differs greatly from natural gas or hydrogen combustion. As a result, several new chemical kinetic mechanisms have been developed. Many of these mechanisms have been validated experimentally; however, this has primarily focused on bulk parameters such as laminar flame speed and ignition delay time. Critically, high quality measurements of species concentrations are needed under controlled conditions that are easily represented by simple models. In this paper, direct, in situ measurements of species concentrations and gas temperature are performed in a laminar flat-flame burner. This arrangement enables comparison with one-dimensional (1D) model predictions, better isolating chemical kinetics from the fluid dynamics. Quantitative species concentrations are determined by absorption spectroscopy using an Fourier-transform-infrared (FTIR) spectrometer. Fuel compositions representative of cracked ammonia (NH3/H2) and ammonia-natural gas (NH3/CH4) are considered for rich and lean equivalence ratios. A major focus of the paper is on the selection of spectral features for nitric oxide and ammonia and correcting for large amounts of baseline H2O absorption.

References

1.
United States Department of State and the United States Executive Office of the President
, 2021, “
The Long-Term Strategy of the United States: Pathways to Net-Zero Greenhouse Gas Emissions by 2050
,” United States Department of State and the United States Executive Office of the President, Washington, DC, accessed Oct. 21, 2024, https://www.whitehouse.gov/wp-content/uploads/2021/10/US-Long-Term-Strategy.pdf
2.
Kobayashi
,
H.
,
Hayakawa
,
A.
,
Somarathne
,
K. D. K. A.
, and
Okafor
,
E. C.
,
2019
, “
Science and Technology of Ammonia Combustion
,”
Proc. Combust. Inst.
,
37
(
1
), pp.
109
133
.10.1016/j.proci.2018.09.029
3.
Li
,
J.
,
Lai
,
S.
,
Chen
,
D.
,
Wu
,
R.
,
Kobayashi
,
N.
,
Deng
,
L.
, and
Huang
,
H.
,
2021
, “
A Review on Combustion Characteristics of Ammonia as a Carbon-Free Fuel
,”
Front. Energy Res.
,
9
, pp.
1
15
.10.3389/fenrg.2021.760356
4.
Elbaz
,
A. M.
,
Wang
,
S.
,
Guiberti
,
T. F.
, and
Roberts
,
W. L.
,
2022
, “
Review on the Recent Advances on Ammonia Combustion From the Fundamentals to the Applications
,”
Fuel Commun.
,
10
, p.
100053
.10.1016/j.jfueco.2022.100053
5.
Weiland
,
N. T.
,
Sidwell
,
T. G.
, and
Strakey
,
P. A.
,
2013
, “
Testing of a Hydrogen Diffusion Flame Array Injector at Gas Turbine Conditions
,”
Combust. Sci. Technol.
,
185
(
7
), pp.
1132
1150
.10.1080/00102202.2013.781164
6.
Bedick
,
C.
,
Tulgestke
,
A.
, and
Strakey
,
P.
,
2023
, “
A Modeling Study on Ammonia and Ammonia/Hydrogen Kinetics for Gas Turbine Engines
,”
IJECE
,
24
(
8
), pp.
39
54
.10.1615/InterJEnerCleanEnv.2023045330
7.
Pugh
,
D.
,
Bowen
,
P.
,
Goktepe
,
B.
,
Giles
,
A.
,
Mashruk
,
S.
,
Valera Medina
,
A.
, and
Morris
,
S.
,
2023
, “
Influence of Steam and Elevated Ambient Conditions on N2O in a Premixed Swirling NH3/H2 Flame
,”
ASME
Paper No. GT2023-102452.10.1115/GT2023-102452
8.
Hayakawa
,
A.
,
Arakawa
,
Y.
,
Mimoto
,
R.
,
Somarathne
,
K. D. K. A.
,
Kudo
,
T.
, and
Kobayashi
,
H.
,
2017
, “
Experimental Investigation of Stabilization and Emission Characteristics of Ammonia/Air Premixed Flames in a Swirl Combustor
,”
IJHE
,
42
(
19
), pp.
14010
14018
.10.1016/j.ijhydene.2017.01.046
9.
Gubbi
,
S.
,
Cole
,
R.
,
Emerson
,
B.
,
Noble
,
D.
,
Steele
,
R.
,
Sun
,
W.
, and
Lieuwen
,
T.
,
2024
, “
Evaluation of Minimum NOx Emission From Ammonia Combustion
,”
ASME J. Eng. Gas Turbines Power
, 146(3), p.
031023
.10.1115/1.4064219
10.
Ånestad
,
A.
,
Sampath
,
R.
,
Moeck
,
J.
,
Gruber
,
A.
, and
Worth
,
N. A.
,
2024
, “
The Structure and Stability of Premixed CH4, H2, and NH3/H2 Flames in an Axially Staged Can Combustor
,”
ASME J. Eng. Gas Turbines Power
, 146(5), p.
051002
.10.1115/1.4063718
11.
Zhang
,
X.
,
Wang
,
J.
,
Chen
,
Y.
, and
Li
,
C.
,
2021
, “
Effect of CH4, Pressure, and Initial Temperature on the Laminar Flame Speed of an NH3-Air Mixture
,”
ACS Omega
,
6
(
18
), pp.
11857
11868
.10.1021/acsomega.1c00080
12.
Bedick
,
C.
,
Boyette
,
W. R.
, and
Strakey
,
P.
,
2023
, “
Ammonia and Cracked Ammonia Laminar Flame Speed Measurements Using the Burner Heat Flux Method and IR Thermometry
,”
Clearwater Clean Energy Conference
, Clearwater, FL, July 23–28. https://www.osti.gov/biblio/1994853
13.
Mathieu
,
O.
, and
Petersen
,
E. L.
,
2015
, “
Experimental and Modeling Study on the High-Temperature Oxidation of Ammonia and Related NOx Chemistry
,”
Combust. Flame
,
162
(
3
), pp.
554
570
.10.1016/j.combustflame.2014.08.022
14.
Pierro
,
M.
,
Urso
,
J.
,
Rahman
,
R. K.
,
Dennis
,
C.
,
Albright
,
M.
,
McGaunn
,
J.
,
Kinney
,
C.
, and
Vasu
,
S. S.
,
2023
, “
Hydrogen and Ammonia Blending With Natural Gas: Ignition Delay Times and Chemical Kinetic Model Validation at Gas Turbine Relevant Conditions
,”
ASME
Paper No. GTP-23-1434.10.1115/GTP-23-1434
15.
Stagni
,
A.
,
Cavallotti
,
C.
,
Arunthanayothin
,
S.
,
Song
,
Y.
,
Herbinet
,
O.
,
Battin-Leclerc
,
F.
, and
Faravelli
,
T.
,
2020
, “
Reaction Chemistry & Engineering Study of the Gas-Phase Oxidation of Ammonia
,”
React. Chem. Eng.
,
5
(
4
), pp.
696
711
.10.1039/C9RE00429G
16.
Stagni
,
A.
,
Arunthanayothin
,
S.
,
Dehue
,
M.
,
Herbinet
,
O.
,
Battin-Leclerc
,
F.
,
Bréquigny
,
P.
,
Mounaïm-Rousselle
,
C.
, and
Faravelli
,
T.
,
2023
, “
Low- and Intermediate-Temperature Ammonia/Hydrogen Oxidation in a Flow Reactor: Experiments and a Wide-Range Kinetic Modeling
,”
J. Chem. Eng.
,
471
, p.
144577
.10.1016/j.cej.2023.144577
17.
Osipova
,
K. N.
,
Korobeinichev
,
O. P.
, and
Shmakov
,
A. G.
,
2021
, “
Chemical Structure and Laminar Burning Velocity of Atmospheric Pressure Premixed Ammonia/Hydrogen Flames
,”
IJHE
,
46
(
80
), pp.
39942
39954
.10.1016/j.ijhydene.2021.09.188
18.
Brackmann
,
C.
,
Alekseev
,
V. A.
,
Zhou
,
B.
,
Nordström
,
E.
,
Bengtsson
,
P.
,
Li
,
Z.
,
Aldén
,
M.
, and
Konnov
,
A. A.
,
2016
, “
Structure of Premixed Ammonia + Air Flames at Atmospheric Pressure: Laser Diagnostics and Kinetic Modeling
,”
Combust. Flame
,
163
, pp.
370
381
.10.1016/j.combustflame.2015.10.012
19.
Goldenstein
,
C. S.
,
Spearrin
,
R. M.
,
Schultz
,
I. A.
,
Jeffries
,
J. B.
, and
Hanson
,
R. K.
,
2014
, “
Wavelength-Modulation Spectroscopy Near 1.4 μm for Measurements of H2O and Temperature in High-Pressure and -Temperature Gases
,”
Meas. Sci. Technol.
,
25
(
5
), p.
055101
.10.1088/0957-0233/25/5/055101
20.
Goldenstein
,
C. S.
,
Spearrin
,
R. M.
,
Jeffries
,
J. B.
, and
Hanson
,
R. K.
,
2014
, “
Wavelength-Modulation Spectroscopy Near 2.5 μm for H2O and Temperature in High-Pressure and -Temperature Gases
,”
Appl. Phys. B
,
116
(
3
), pp.
705
716
.10.1007/s00340-013-5754-1
21.
Rein
,
K. D.
,
Roy
,
S.
,
Sanders
,
S. T.
,
Caswell
,
A. W.
,
Schauer
,
F. R.
, and
Gord
,
J. R.
,
2017
, “
Measurements of Gas Temperatures at 100 kHz Within the Annulus of a Rotating Detonation Engine
,”
Appl. Phys. B
,
123
(
3
), p.
88
.10.1007/s00340-017-6647-5
22.
Wang
,
Y.
,
Wei
,
W.
,
Zhang
,
Y.
, and
Hanson
,
R. K.
,
2021
, “
A New Strategy of Characterizing Hydrocarbon Fuels Using FTIR Spectra and Generalized Linear Model With Grouped-Lasso Regularization
,”
Fuel
,
287
, p.
119419
.10.1016/j.fuel.2020.119419
23.
Chao
,
X.
,
Jeffries
,
J. B.
, and
Hanson
,
R. K.
,
2012
, “
Wavelength-Modulation-Spectroscopy for Real-Time, In Situ NO Detection in Combustion Gases With a 5.2 um Quantum-Cascade Laser
,”
Appl. Phys. B
,
106
(
4
), pp.
987
997
.10.1007/s00340-011-4839-y
24.
Diemel
,
O.
,
Pareja
,
J.
,
Dreizler
,
A.
, and
Wagner
,
S.
,
2017
, “
An Interband Cascade Laser-Based In Situ Absorption Sensor for Nitric Oxide in Combustion Exhaust Gases
,”
Appl. Phys. B
,
123
(
5
), p.
167
.10.1007/s00340-017-6741-8
25.
Stiborek
,
J. W.
,
Schwartz
,
C. J.
,
Kempema
,
N. J.
,
Szente
,
J. J.
,
Loos
,
M. J.
, and
Goldenstein
,
C. S.
,
2023
, “
Four-Color Fiber-Coupled Mid-Infrared Laser-Absorption Sensor for Temperature, CO, CO2, and NO at 5 kHz in Internal Combustion Engine Vehicle Exhaust
,”
Appl. Opt.
,
62
(
32
), p.
8517
.10.1364/AO.504122
26.
Almodovar
,
C. A.
,
Su
,
W.-W. W.
,
Strand
,
C. L.
, and
Hanson
,
R. K.
,
2019
, “
R-Branch Line Intensities and Temperature-Dependent Line Broadening and Shift Coefficients of the Nitric Oxide Fundamental Rovibrational Band
,”
JQRST
,
239
, p.
106612
.10.1016/j.jqsrt.2019.106612
27.
Almodovar
,
C. A.
,
Spearrin
,
R. M.
, and
Hanson
,
R. K.
,
2017
, “
Two-Color Laser Absorption Near 5 μm for Temperature and Nitric Oxide Sensing in High-Temperature Gases
,”
JQRST
,
203
, pp.
572
581
.10.1016/j.jqsrt.2017.03.003
28.
Owen
,
K.
, and
Farooq
,
A.
,
2014
, “
A Calibration-Free Ammonia Breath Sensor Using a Quantum Cascade Laser With WMS 2f/1f
,”
Appl. Phys. B
,
116
(
2
), pp.
371
383
.10.1007/s00340-013-5701-1
29.
Duan
,
K.
,
Ji
,
Y.
,
Wen
,
D.
,
Lu
,
Z.
,
Xu
,
K.
, and
Ren
,
W.
,
2023
, “
Mid-Infrared Fiber-Coupled Laser Absorption Sensor for Simultaneous NH3 and NO Monitoring in Flue Gases
,”
Sens. Actuators, B
,
374
, p.
132805
.10.1016/j.snb.2022.132805
30.
Sur
,
R.
,
Spearrin
,
R. M.
,
Peng
,
W. Y.
,
Strand
,
C. L.
,
Jeffries
,
J. B.
,
Enns
,
G. M.
, and
Hanson
,
R. K.
,
2016
, “
Line Intensities and Temperature-Dependent Line Broadening Coefficients of Q-Branch Transitions in the v2 Band of Ammonia Near 10.4 μm
,”
JQRST
,
175
, pp.
90
99
.10.1016/j.jqsrt.2016.02.002
31.
Duan
,
K.
,
Ji
,
Y.
,
Lu
,
Z.
, and
Ren
,
W.
,
2022
, “
Measurement of Temperature-Dependent Line Parameters of Ammonia Transitions Near 1103 cm−1
,”
JQRST
,
288
, p.
108269
.10.1016/j.jqsrt.2022.108269
32.
Owen
,
K.
,
Es-Sebbar
,
E.
, and
Farooq
,
A.
,
2013
, “
Measurements of NH3 Linestrengths and Collisional Broadening Coefficients in N2, O2, CO2, and H2O Near 1103.46 cm−1
,”
JQRST
,
121
, pp.
56
68
10.1016/j.jqsrt.2013.02.001.
33.
Alturaifi
,
S. A.
, and
Petersen
,
E. L.
,
2021
, “
Ammonia Line Strengths and N2-, O2-, Ar-, He-, and Self-Broadening Coefficients in the v2 Band Near 10.4 μm
,”
JQRST
,
262
, p.
107516
.10.1016/j.jqsrt.2021.107516
34.
Pierro
,
M.
,
Dennis
,
C.
,
Urso
,
J.
,
Kinney
,
C.
,
Khaleel Rahman
,
R.
, and
Vasu
,
S.
,
2024
, “
Pressure Effects on NH3 and NO Absorption Cross-Sections in a High-Pressure Shock Tube
,”
AIAA
Paper No. 2024-1099.10.2514/6.2024-1099
35.
Zhu
,
D.
,
Qu
,
Z.
,
Li
,
M.
,
Agarwal
,
S.
,
Fernandes
,
R.
, and
Shu
,
B.
,
2022
, “
Investigation on the NO Formation of Ammonia Oxidation in a Shock Tube Applying Tunable Diode Laser Absorption Spectroscopy
,”
Combust. Flame
,
246
, p.
112389
.10.1016/j.combustflame.2022.112389
36.
Zhu
,
D.
,
Ruwe
,
L.
,
Schmitt
,
S.
,
Shu
,
B.
,
Kohse-Höinghaus
,
K.
, and
Lucassen
,
A.
,
2023
, “
Interactions in Ammonia and Hydrogen Oxidation Examined in a Flow Reactor and a Shock Tube
,”
J. Phys. Chem. A
,
127
(
10
), pp.
2351
2366
.10.1021/acs.jpca.2c07784
37.
Zheng
,
D.
,
He
,
D.
,
Du
,
Y.
,
Ding
,
Y.
, and
Peng
,
Z.
,
2023
, “
Nitromethane as a Nitric Oxide Precursor for Studying High-Temperature Interactions Between Ammonia and Nitric Oxide in a Shock Tube
,”
Combust. Flame
,
250
, p.
112644
.10.1016/j.combustflame.2023.112644
38.
Zheng
,
D.
,
He
,
D.
,
Du
,
Y.
,
Li
,
J.
,
Zhang
,
M.
,
Ding
,
Y.
, and
Peng
,
Z.
,
2023
, “
Experimental Study of the Methane/Hydrogen/Ammonia and Ethylene/Ammonia Oxidation: Multi-Parameter Measurements Using a Shock Tube Combined With Laser Absorption Spectroscopy
,”
Combust. Flame
,
254
, p.
112830
.10.1016/j.combustflame.2023.112830
39.
Alturaifi
,
S. A.
,
Mathieu
,
O.
, and
Petersen
,
E. L.
,
2022
, “
Shock-Tube Laser Absorption Measurements of N2O Time Histories During Ammonia Oxidation
,”
Fuel Commun.
,
10
, p.
100050
.10.1016/j.jfueco.2022.100050
40.
Pothen
,
A.
,
Hulliger
,
N.
,
Dennis
,
C. W.
,
Urso
,
J.
,
Pierro
,
M.
,
Vasu
,
S.
, and
Kinney
,
C.
,
2024
, “
N2O Absorption Cross Section Measurements in a Shock Tube at High Pressures and Temperatures
,”
AIAA
Paper No. 2024-0441.10.2514/6.2024-0441
41.
Rothman
,
L. S.
,
Gordon
,
I. E.
,
Barber
,
R. J.
,
Dothe
,
H.
,
Gamache
,
R. R.
,
Goldman
,
A.
,
Perevalov
,
V. I.
,
Tashkun
,
S. A.
, and
Tennyson
,
J.
,
2010
, “
HITEMP, the High-Temperature Molecular Spectroscopic Database
,”
JQRST
,
111
(
15
), pp.
2139
2150
.10.1016/j.jqsrt.2010.05.001
42.
Rothman
,
L. S.
,
Gordon
,
I. E.
,
Babikov
,
Y.
,
Barbe
,
A.
,
Chris Benner
,
D.
,
Bernath
,
P. F.
,
Birk
,
M.
, et al.,
2013
, “
The HITRAN2012 Molecular Spectroscopic Database
,”
JQRST
,
130
, pp.
4
50
.10.1016/j.jqsrt.2013.07.002
43.
Gordon
,
I. E.
,
Rothman
,
L. S.
,
Hargreaves
,
R. J.
,
Hashemi
,
R.
,
Karlovets
,
E. V.
,
Skinner
,
F. M.
,
Conway
,
E. K.
, et al.,
2022
, “
The HITRAN2020 Molecular Spectroscopic Database
,”
JQRST
,
277
, p.
107949
.10.1016/j.jqsrt.2021.107949
44.
Griffiths
,
P. R.
, and
De Haseth
,
J. A.
,
2007
,
Fourier Transform Infrared Spectrometry
, John Wiley & Sons, Inc., Hoboken, NJ.
45.
Shimadzu
, 2023, “
Fourier Transform and Apodization
,” Shimadzu, Kyoto, Japan, accessed Dec. 4, 2023, https://www.shimadzu.com/an/service-support/technical-support/ftir/tips_and_tricks/apodization.html
46.
Goldenstein
,
C. S.
,
Schultz
,
I. A.
,
Spearrin
,
R. M.
,
Jeffries
,
J. B.
, and
Hanson
,
R. K.
,
2014
, “
Scanned-Wavelength-Modulation Spectroscopy Near 2.5 μm for H2O and Temperature in a Hydrocarbon-Fueled Scramjet Combustor
,”
Appl. Phys. B
,
116
(
3
), pp.
717
727
.10.1007/s00340-013-5755-0
47.
Goodwin
,
D. G.
,
Speth
,
R. L.
,
Moffat
,
H. K.
, and
Weber
,
B. W.
,
2023
, “
Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes
,” accessed Aug. 28, 2023, www.cantera.org
48.
Goldenstein
,
C. S.
,
Jeffries
,
J. B.
, and
Hanson
,
R. K.
,
2013
, “
Diode Laser Measurements of Linestrength and Temperature-Dependent Lineshape Parameters of H2O-, CO2-, and N2-Perturbed H2O Transitions Near 2474 and 2482 nm
,”
JQRST
,
130
, pp.
100
111
.10.1016/j.jqsrt.2013.06.008.
49.
Otomo
,
J.
,
Koshi
,
M.
,
Mitsumori
,
T.
,
Iwasaki
,
H.
, and
Yamada
,
K.
,
2017
, “
Chemical Kinetic Modeling of Ammonia Oxidation With Improved Reaction Mechanism for Ammonia/Air and Ammonia/Hydrogen/Air Combustion
,”
IJHE
,
43
(
5
), pp.
3004
3014
.10.1016/j.ijhydene.2017.12.066
50.
Okafor
,
E. C.
,
Naito
,
Y.
,
Colson
,
S.
,
Ichikawa
,
A.
,
Kudo
,
T.
,
Hayakawa
,
A.
, and
Kobayashi
,
H.
,
2018
, “
Experimental and Numerical Study of the Laminar Burning Velocity of CH4–NH3–Air Premixed Flames
,”
Combust. Flame
,
187
, pp.
185
198
.10.1016/j.combustflame.2017.09.002
51.
Arunthanayothin
,
S.
,
Stagni
,
A.
,
Song
,
Y.
,
Herbinet
,
O.
,
Faravelli
,
T.
, and
Battin-Leclerc
,
F.
,
2021
, “
Ammonia-Methane Interaction in Jet-Stirred and Flow Reactors: An Experimental and Kinetic Modeling Study
,”
Proc. Combust. Inst.
,
38
(
1
), pp.
345
353
.10.1016/j.proci.2020.07.061
You do not currently have access to this content.